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Abstract

Most enterprises and organizations have digitized their work by implement-
ing process-aware information systems. These systems typically record a
large amount of event data about the organization’s day-to-day business.
Organizations are interested in analyzing this data to optimize their business
processes. Process mining is a research field that analyzes event data to obtain
valuable knowledge about how processes are executed in reality. Different
from conventional interview-based methods, process mining analyzes the
process performance and compliance solely based on recorded event data.

Currently, the work of analysts using process mining tools is characterized as
largely manual, leading to many ad-hoc tasks. With the growth of available
event data and the increasing complexity of processes, several issues emerge
in practice. Many process mining methods are not specifically designed for
large event logs, leading to high computation time and a substantial amount
of manual work. Consequently, suitable subsets of cases must be selected
before applying certain analysis tasks successfully. Furthermore, applying
process mining techniques to unknown event data often requires extensive
domain knowledge and process mining expertise to obtain valuable insights.
Although efforts were made to systematize the manual work of analysts
in process mining projects, current tools lack intelligent computer-assisted
guidance.

This dissertation introduces several contributions to different steps along an
analyst’s workflow to address the above issues. It is divided into three major
parts: The first part introduces a process knowledge artifact framework that
simplifies data extraction and processing of heterogeneous data sources as
an enabling preparatory step towards process mining. In the second part,
the dissertation introduces three algorithms specifically designed for large
and complex real-life event logs. A novel compliance checking algorithm
significantly improves runtime performance for large event logs to identify
compliance rule violations. A parameter-free process drift detection algorithm
automatically detects changes in the process execution over time to reveal
potential process issues. A novel multi-perspective trace clustering algorithm
automatically detects patterns in the control flow and the data perspective of
a process to reveal the different process behaviors in event logs, aiming at
simplifying process discovery. The third part of the dissertation integrates the
contributions made in the first two parts and introduces an interactive visual
recommendation approach to enhance process analysis guidance. Lastly, a
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process improvement approach is presented, suggesting modifications to
process models for a given improvement goal.

The proposed algorithms and methods were evaluated with synthetic and
real-life event logs, demonstrating their superior qualitative performance and
practical feasibility. A user study conducted with process mining experts eval-
uated the prototype implementation of the interactive visual recommendation
system to assess the usefulness in the process analysis workflow.
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Zusammenfassung

Viele Unternehmen haben ihre Arbeitsabläufe mittels prozessorientierter In-
formationssysteme digitalisiert. Diese Informationssysteme sammeln eine
große Menge an Ereignisdaten über das Tagesgeschäft von Unternehmen.
Durch die Analyse dieser Daten erhoffen sich Unternehmen ihre Geschäftspro-
zesse zu optimieren. Process Mining ist ein Forschungsgebiet, das solche
Ereignisdaten analysiert, um wertvolle Erkenntnisse über den tatsächlichen
Ablauf von Prozessen zu gewinnen. Im Gegensatz zu Interview-basierten
Methoden nutzt Process Mining ausschließlich aufgezeichnete Ereignisdaten,
um Prozessperformance und Konformitätsverstöße zu ermitteln.

Die Analyse von Geschäftsprozessen mittels aktueller Process-Mining-Werk-
zeuge ist jedoch zum größten Teil durch viele manuelle Arbeitsschritte charak-
terisiert. Das stetige Wachstum an verfügbaren Daten sowie die zunehmende
Komplexität von Geschäftsprozessen führen in der Praxis daher zu erhebli-
chen Problemen bei der Analyse. Viele Process-Mining-Methoden wurden
nicht speziell für große Ereignisprotokolle optimiert, was oft zu langen Berech-
nungszeiten führt. Daher müssen oft sinnvolle Teilmengen selektiert werden,
um die Analyse erfolgreich ausführen zu können. Zudem erfordern viele
Process-Mining-Methoden umfangreiches prozessspezifisches Fachwissen
sowie Process-Mining-Knowhow, um wertvolle Erkenntnisse zu gewinnen.
Trotz der Systematisierung von Process-Mining-Aufgaben fehlen derzeitigen
Werkzeugen intelligente computergestützte Analyseempfehlungen.

Diese Arbeit stellt mehrere Beiträge entlang der Vorgehensweise von Ana-
lysten im Process Mining vor, um die beschriebenen Problemfelder zu adres-
sieren. Die Arbeit ist in drei Hauptteile gegliedert: Im ersten Teil wird ein
Rahmenwerk vorgestellt, welches die Datenextraktion und -verarbeitung
von Prozessdaten aus heterogenen Datenquellen vereinfacht, um Process
Mining anwenden zu können. Der zweite Teil stellt drei Algorithmen vor, die
speziell für die Verarbeitung von großen und komplexen Ereignisprotokol-
len entwickelt wurden. Ein neuartiger Compliance-Checking-Algorithmus
erkennt Konformitätsverstöße auch in sehr umfangreichen Ereignisproto-
kollen und zeichnet sich dabei durch deutlich verbesserte Laufzeit aus. Ein
parameter-freier Process-Drift-Detection-Algorithmus detektiert automatisiert
Veränderungen des Prozessverhaltens über die Zeit in Ereignisprotokollen,
die zu potenziellen Prozessproblemen führen können. Ein neuartiger Multi-
Perspective-Trace-Clustering-Algorithmus extrahiert verschiedene Prozess-
verhalten in Ereignisprotokollen auf Basis von Kontrollfluss und Datenattri-
buten automatisch, um Process Discovery zu verbessern. Der dritte Teil der
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Arbeit integriert die ersten beiden Teile und stellt ein interaktives Analyse-
empfehlungssystem vor, das Analysten konkrete Analysevorschläge erzeugt.
Schließlich wird ein Ansatz vorgestellt, der auf Basis zuvor definierter Ziele
Verbesserungen an Prozessmodellen vorschlägt.

Die vorgestellten Algorithmen und Methoden wurden mittels synthetischer
und realer Ereignisprotokollen ausgewertet, um deren qualitative Leistung
und deren praktischen Nutzen zu demonstrieren. Mittels einer durchge-
führten Nutzerstudie mit Process Mining Experten wurde das interaktive
Analyseempfehlungssystem ausgewertet, um dessen Nützlichkeit im Rahmen
von Process Mining Projekten zu bewerten.
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Part I

Introduction





1
Introduction

In recent years, more and more mid and large size enterprises started to
collect event data about their daily business with the goal of optimizing and
improving their work. This new practice usually leads to huge datasets that
must be processed automatically. More concretely speaking, large investments
have been made towards the digitization of information systems that coordi-
nate and support business processes across the organization. Analyzing such
process-related data offers organizations new opportunities to achieve more
efficient and effective process execution. However, the increasing process
complexity and the automation of essential tasks in production or services
make it difficult to obtain a holistic view of a specific process. Tasks such as
business process improvement, optimization, and process automation become
increasingly challenging without having a deep understanding of the actual
behavior of the process.

Process mining analyzes event data of Process-aware Information Systems
(PAISs) to obtain a better understanding of how processes are executed in
reality [Aal11]. It provides valuable insights to improve process execution,
predict process outcomes and identify potential compliance issues. Process
mining is categorized into three major tasks: process discovery, conformance
checking, and process enhancement [Aal11]. Process discovery reconstructs
an as-is process model solely based on the recorded event data. Conformance
checking checks if the actual process behavior observed in reality conforms to
an existing process model and vice versa. Process enhancement extends and
improves existing process models with information from event data to better
reflect reality. Process mining techniques have been successfully applied to
event data of different processes and organizations. The results have been
documented in many case studies [Aal+07; Man+08; Goe+11; LL14; Eck+15;
Váz+16; CJ17; Man18]. During the last decade, various open-source and
commercial tools have emerged. The process mining discipline is growing
rapidly, and these tools are making it accessible to a wider range.

Due to the growth of available event data and the increase of process com-
plexity, it is increasingly challenging to gain interesting insights with the help
of process mining techniques [Eck+15; Nie15]. Analysts require extensive
domain knowledge [Aal+07; Goe+11] and process mining expertise [LL14] to
obtain the desired results. In practice, analysts still carry out most of their
process mining activities manually. As a consequence, process mining projects

3
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Figure 1.1: Overview of the PM2 methodology. Adapted from [Eck+15].

are typically supported by external consultants. Various efforts have been
made to systematize process mining in order to guide the planning and execu-
tion of process mining projects and to reduce costs and time [BGW09; Aal11;
Eck+15]. One of such efforts is PM2 [Eck+15], which is a well-established
methodology that describes in six stages how to conduct process mining
projects successfully. Figure 1.1 illustrates the stages of the methodology and
how they are interconnected with each other.

Despite the increasing number of available tools which incorporate pro-
cess mining and machine learning capabilities, the existing tools still lack
intelligent computer-assisted support to reduce manual work. This lack of
support results in repetitive and time-consuming tasks hampering the effi-
cient analysis of processes. Ad-hoc work is needed to: (i) prepare event logs;
(ii) scan through the massive amount of data; (iii) interpret highly complex
process models; and (iv) compute process performance measures to receive
the desired output.

This thesis aims to address the above issues by providing several intelligent
computer-assisted methods that improve the support for process mining
analysts working with event logs. In particular, we propose enhancements
to the state of the art in three different areas of process mining: knowledge
extraction, process analysis, and process analysis assistance.

1.1 Problems and Research Questions

The research work presented in this thesis addresses three main research
questions and challenges in the practical application of process mining tech-
niques. Our work is split into different areas that determine the three main
parts of this thesis alongside the introduction and conclusion part: knowledge
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introduced in this thesis.

extraction, process analysis, and process analysis assistance. These three main
areas of this thesis are linked to the different stages of the PM2 methodol-
ogy. Figure 1.2 depicts the links between the main research questions and
contributions.

Knowledge Extraction

The first part of this thesis investigates the first three stages of the PM2

methodology that deal with "(1) Planning", "(2) Extraction", and "(3) Data
processing". This part of the thesis aims at answering the following research
question:

RQ1: How can event logs be better collected, consolidated, and annotated from
heterogeneous data sources to enable process mining?

The basis for almost any process mining technique is an event log which
stores information about the actual execution of a process in information
systems. However, event data is rarely explicitly stored in a consistent process
event database but is distributed in different data sources such as plain
text files or relational databases. This data needs to be collected and then
transformed into event logs for use in process mining [IEE11]. According to
previous case studies, data preparation can consume up to 90% of the total
process mining project time [LL14]. In addition, data entities often need to
be translated into human-readable entities because they are usually stored
technically. Incomplete process data and the lack of domain knowledge in
event logs lead to incorrect assumptions and interpretations. Consequently,
process mining results are misleading or provide incorrect findings [Eck+15].
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Process Analysis

The second part of this thesis deals with the "(4) Mining & Analysis" stage of
the process mining methodology (see Figure 1.1). This part of the thesis aims
to answer the following main research question:

RQ2: How can real-life event logs be analyzed better and more effectively with
process mining methods?

Many process mining methods cannot easily be applied to real-life event
logs. The increase of available event data and the flexibility of processes lead
to several issues with the current methods. We divide our main research
question for this part into three more specific research questions to address
these issues:

• RQ2.1: How can compliance rules be efficiently evaluated in large real-life
event logs?

• RQ2.2: How can process drifts be detected in real-life event logs without any
prior knowledge about the process?

• RQ2.3: How can the different process behaviors, in flexible environments,
be extracted from real-life event logs without any prior knowledge about the
process?

An important area of interest for organizations is compliance checking.
However, compliance checking of large event logs leads to high computing
times, making it unusable for event logs of industrial size [MCA13]. An-
other problem area of current process mining methods is the assumption
of a single process behavior within an event log. Practice has shown that
flexible environments lead to heterogeneous event logs with different process
behaviors [SGA09; ETF16; Wee+13]. These different behaviors are often not
considered when applying process mining techniques.

Process Analysis Assistance

In the third part of this thesis, the last two stages of the PM2 methodology
are investigated. The stages "(5) Evaluation" and "(6) Process Improvement
& Support" interpret the results of the process analysis and provide actions
for improving processes. This part of the thesis aims to answer the following
research question:

RQ3: How can process analysis assistance in process mining tools better support
the workflow of analysts?

Currently, the workflow of analysts using process mining in practice is
characterized largely as a set of manual tasks. Guiding analysts to interesting
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and valuable insights can help to further improve processes. In this respect,
we aim to answer the following two sub-research questions:

• RQ3.1: How to design assistance for process mining tools to support the work
of analysts?

• RQ3.2: How can insights of process mining analysis result in process model
improvements?

Many techniques require analysts to perform ad-hoc tasks, scan through
massive amounts of data, apply other analysis techniques before visually in-
specting the results (in order to discover valuable insights such as anomalies,
inefficiencies, bottlenecks, or compliance violations). Typically, real-life event
logs generate highly complex process models, which are called spaghetti
models because of their appearance and pose a particular challenge for vi-
sual inspection. Despite the increasing number of process mining tools and
established process mining methodologies, existing tools provide only lim-
ited intelligent computer-assisted process analysis guidance [IEE11; Eck+15;
Nie15].

1.2 Contributions

This thesis contributes to the three areas introduced in the previous section,
providing novel approaches that respond to the research questions raised
above. This section briefly summarizes the contributions of this thesis per
chapter. Figure 1.3 depicts the overall structure of the thesis.

Knowledge Extraction. Part II of the thesis introduces the following knowl-
edge extraction method:

• A framework (Chapter 3) simplifies the workflow of analysts during
the collection, preparation, and analysis of event data in process min-
ing projects. This framework addresses RQ1 by introducing process
knowledge artifacts. First, these artifacts close the gap between raw
data stored in PAISs and the event log needed for process mining. Sec-
ond, analysts can capture process analytical knowledge, i. e., the tasks
needed to investigate a particular process problem, in a meta-model.

Process Analysis. In the process analysis part (Part III), RQ2 is addressed by
means of three contributions, which each answer the subquestions of RQ2:

• A compliance rule evaluation method addresses RQ2.1 (Chapter 4). We
formulate compliance checking as a graph reachability problem. The
method returns a counterexample that can be visually inspected. It is
specifically designed to work with very large event logs. The approach
is applicable in various real-life scenarios.
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• A parameter-free process drift detection method addresses RQ2.2 (Chap-
ter 5). Our method uses graph measures of discovered process models
to reliably detect changes to the process execution over time. Detected
process drifts are characterized by returning the changes to the in-
spected graph measures to provide further insights about the identified
process change.

• A parameter-free multi-perspective trace clustering method addresses
RQ2.3 (Chapter 6). We combine the control flow and the data perspective
of the process. The method searches for sets of process instances with
similar behavior. The clustering result is automatically optimized with
respect to process model fitness.

Process Analysis Assistance. Lastly, the following two contributions support
analysts during their process analysis and, therefore, address RQ3:

• An interactive process mining browsing tool addresses RQ3.1 (Chap-
ter 7). Our method provides exploratory suggestions during the analysis
of large event logs. The tool recommends interesting subsets in the form
of a case filter to guide the user through the event log exploration. Each
subset is characterized by a set of automatically calculated analysis
insights.

• A motif-based process improvement method addresses RQ3.2 (Chap-
ter 8). We adapt a process model towards a given optimization goal.
The method uses graph motifs to suggest potential process model mod-
ifications while retaining the feasibility of the process using constraints
extracted from event logs.

The core contributions of this thesis were published in five peer-reviewed
publications [See+16a; See+16b; SNM17; SNM18a; See+19a] at the Interna-
tional Conference on User Interfaces (IUI), the International Conference on
Subject-oriented Business Process Management (S-BPM), the International
Conference on Business Process Management (BPM), and the International
Conference on Information Systems (ICIS). Additionally, two peer-reviewed
workshop papers were published [SSM18; SNM18b] at the KDD Workshop on
Interactive Data Exploration and Analytics (IDEA) and the Business Process
Intelligence Workshop (BPI). The interactive process mining browsing tool
was also presented as a demo [See+19b] at the the International Conference
on Process Mining (ICPM).

1.3 Outline

This thesis is structured into five parts and 9 chapters. An overview of the
structure is depicted in Figure 1.3.
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part i : introduction The introductory Chapter 1 describes the context
in which the contributions of this thesis are placed. Chapter 2 intro-
duces the necessary background knowledge such as basic mathematical
notations, expressions, data and process mining algorithms, and the
notation for event logs.

part ii : knowledge extraction Chapter 3 presents the process knowl-
edge artifact framework, which allows analysts to model process analy-
sis knowledge for reusable analysis workflows.

part iii : process analysis Chapter 4 introduces the use of taint flow
analysis for evaluating business compliance rules. The algorithm is
specifically designed to work with large real-life event logs. Chapter 5

introduces a parameter-free process drift detection algorithm based
on graph metrics on top of discovered process models. Chapter 6

contributes a multi-perspective trace clustering approach that uses
control flows and case attributes to generate subsets of similar cases.

part iv : process analysis assistance Chapter 7 introduces Process-
Explorer, an approach to enhance the interactive visual exploration
of large real-life event logs. Chapter 8 presents a process improvement
approach that suggests modifications to existing process models without
affecting feasibility.

part v : conclusion Chapter 9 summarizes the thesis and highlights the
contributions. Furthermore, this chapter gives an outlook on future
work.
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Figure 1.3: Structure of this thesis.



2
Background

In this chapter, the necessary background knowledge such as basic mathe-
matical notations, expressions, data and process mining algorithms, and the
notation for event logs are introduced.

2.1 Basic Notations

In this thesis, we use the usual mathematical notations for elements, sets, and
logic operators. We use X = {a, b, c},∈, /∈,⊆,⊂,∪,∩, \,P(X), |X| for denot-
ing sets, element of, not element of, subset of, proper subset of, union, intersection,
complement, power set, and cardinality. Furthermore, we use N = {1, 2, 3, ...} to
refer to the positive natural numbers.

Besides sets, the concept of multi-sets is used which allows the same object to
be part of a set multiple times.

Definition 2.1 (Multi-set). A multi-set is a tuple M = (X, m), where X is the
underlying set and m : X → N is the multiplicity function. It indicates the
number of occurrences of an element x ∈ X in the multi-set M. Similar to
sets, x ∈ M denotes the containment of x in the multi-set, i. e., m(x) ≥ 1.

This thesis uses a simplified notation of a multi-set, according to [Aal11]:
M = [a, a, b, b, b] = [a2, b3] denotes the multi-set M = ({a, b}, m) with m(a) =
2 and m(b) = 3. Further, we denote B(D) = D →N as the set of multi-sets
over a finite domain D, i. e., X ∈ B(D) is a multi-set, where X(d) denotes the
number of times d occurs in the multi-set for each d ∈ D.

Sequences of events are the basis for process mining and widely used in this
thesis. A sequence is an ordered collection of objects in which objects can
occur multiple times.

Definition 2.2 (Sequence). Let A be a set of objects. A non-empty sequence
over A is a function σ : {1, ..., n} → A with a sequence length of n. σ is the
function that defines in which order objects of A appear in the sequence. A
sequence is denoted as σ = 〈a1, ..., an〉 where ai = σ(i), for 1 ≤ i ≤ n. ai ∈ σ

is the i-th object in the sequence. The empty sequence of length 0 is denoted
as 〈〉.

11
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We further denote A∗ as the set of sequences over elements in A, i. e., for any
n ∈N and a1, a2, ..., an ∈ A: 〈a1, a2, ..., an〉 ∈ A∗.

2.2 Event Logs

Process-aware Information Systems (PAISs) [Aal11], such as those offered by
SAP, Oracle, or Microsoft, usually record event data, providing information
about what activity was executed when, where, and by whom. Event data is
often stored in event logs.

Table 2.1 shows an example event log of a procurement handling process
recorded by a PAISs. We assume that each event log only contains information
about a single process, i. e., a series of structured activities in order to achieve
a particular business goal. Additionally, we assume that each event can be
referred to a single process instance, also called case. In Table 2.1 each event is
associated to a specific case, e. g., case 1 or case 2. We further assume that
each event can be associated with an activity. For example, in Table 2.1 events
are associated to activities like Purchase request created, Purchase request release,
and Purchase order created. Lastly, we assume that events within a case are
ordered, e. g., by timestamp.

In Table 2.1 cases and events have additional information, i. e., event attributes
and case attributes. For example, a timestamp and a resource, e. g., the person
that executed the event, is associated with each event. Each case is associated
with the vendor and category attribute.

2.2.1 Event Log Notation

In the following, we give a formal definition of events and attributes.

Definition 2.3 (Event, Attribute [Aal16]). Let E be the set of all possible event
identifiers that refer to a specific event. Events may be described by attributes,
such as a timestamp. Let A be the set of attributes and Va the set of all
possible values of attribute a ∈ A. For an event e ∈ E and an attribute a ∈ A,
let #a(e) be the function that returns the value of attribute a for the event e.

In this thesis, we assume the existence of at least the following event at-
tributes [Aal11]:

• #activity(e) refers to the activity associated to e.

• #timestamp(e) refers to the timestamp of event e.

• #resource(e) refers to the resource of event e.
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Table 2.1: Simplified example event log of a procurement handling process where
each line corresponds to an event.
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Often activities in processes have a life-cycle [Aal16] and are not atomic
operations; they often have a duration, i. e., a start and completion time. The
life-cycle of an activity describes its behavior. For example, events in an event
log may describe the start or completion of activities. Hence, multiple events
may refer to the same activity. For this reason, classifiers are introduced. A
classifier is a function that associates attributes of an event to an activity label,
i. e., the name of the activity used in a process model.

Definition 2.4 (Classifier [Aal16]). For any event e ∈ E , we denote e as the
name of the event.

Although different classifiers can be defined, this thesis mainly uses the
activity name as the classifier function for events: e = #activity(e). Note that
the classifier can also be applied to sequences 〈e1, e2, ..., en〉 = 〈e1, e2, ..., en〉.

An event log consists of cases and cases themselves consists of events. Given
a single case, the sequence of corresponding events is called trace. Each event
within a case reflects the execution of an activity. In the following, we formally
define cases, traces, and event logs:

Definition 2.5 (Case [Aal16]). Let C be the set of all possible case identifiers.
Similar to events, cases can have attributes. For a case c ∈ C and an attribute
a ∈ A: function #a(c) yields the value of attribute a for case c. Each case
contains a mandatory attribute trace: #trace(c) ∈ E∗, denoted as ĉ = #trace(c).

Definition 2.6 (Trace [Aal16]). A trace is a finite non-empty sequence of
events σ ∈ E∗ such that each event only occurs once within a trace: 1 ≤ i <
j ≤ |σ| : σ(i) 6= σ(j).

Definition 2.7 (Event Log [Aal16]). An event log is a set of cases L ⊆ C such
that each event only occurs at most once in the log, i.e., for any c1, c2 ∈ L
such that c1 6= c2 : ĉ1 ∩ ĉ2 = ∅.

Every event and every case is associated with a unique identifier. An identifier
e ∈ E refers to a specific event and an identifier c ∈ C refers to a specific case.
This is necessary because multiple events may have the same attributes, e. g.,
events may occur multiple times for different cases. Similarly, multiple cases
can occur with the same sequence of activities.

Example 2.1

Table 2.1 shows three cases of an event log of a procurement han-
dling process. The log consists of the cases L = {1, 2, 3}, events E =

{11, 12, 13, 14, 15, 16, 21, 22, 24, 25, 26, 31, 32, 33, 34} and the attributes
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A = {Case id, Event id, Activity, Timestamp, Resource, Vendor, Category}.
The activity of the event 13 can be obtained as #activity(13) = ’Purchase order
created’.

The table also shows the values of the additional attributes. For exam-
ple, #category(1) = ’Office supplies’ or #resource(13) = ’Roy’. Note, that
not all cells are filled with values. Some values may only be defined for
specific events or are defined as case attributes.

2.2.2 Simple Event Log Notation

Some process mining techniques consider only the activity names of events
within an event log. As a simplified representation, a simplified event log is
introduced which only stores the activity name and the sequence order; all
other attributes are removed.

Definition 2.8 (Simple Event Log [Aal16]). A simple event log consists only
of traces with activity names. Let Σ be a set of activity names, then a simple
event log is a set of sequences over the set of activity names with sequences
defined as σ ∈ Σ∗. A simple event log L is a multi-set of traces over Σ, i. e.,
L ∈ B(Σ∗).

The simple event log, transformed from the event log introduced in Table 2.1,
is shown in Figure 2.1. It shows the three traces t1, t2 and t3. For instance,
t1 = 〈Purchase request created, Purchase request released, Purchase order
created, Goods receipt, Invoice receipt, Invoice payment〉.

PR 

created

PR 

released

PO 

created

Goods

receipt

Invoice

receipt

Invoice

payment

PO 

created

Invoice

receipt

Payment 

block

Goods

receipt

Pay. Block 

remove

Invoice

payment

PO 

created

Goods

receipt

Invoice

receipt

Invoice

payment

𝑡1

𝑡2

𝑡3

Figure 2.1: A simple event log obtained by transforming the three traces of the
example event log shown in Table 2.1.

2.2.3 Process Perspectives

Many different forms of information is needed, besides the activities being
executed, to adequately describe an entire business process. Some of this
information is also stored in an event log and other information can only be
indirectly obtained from the executing organization. In the literature, different
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process-oriented modeling perspectives [CKO92; JB96; Aal11; IEE11] as well
as goal-oriented perspectives [Pap+16; GA19] are considered:

control flow perspective The control flow perspective deals with the
order of activities executed in a process. Most process analysis projects
start with the discovery of process models to inspect the actual control
flow of a process. Figure 2.4 shows a process model solely showing the
control flow of the BPI Challenge 2019 event log.

organizational perspective The organizational perspective deals with
the organizational structure in which the process is executed. Particu-
larly, it describes the interaction between different resources and their
relationship to activities. Resources are not necessarily just people, but
also software or hardware robots used for task automation.

time perspective The time perspective deals with time-related character-
istics of a process. Unlike the control flow perspective, which arranges
activities in a sequence, the time perspective extends this view to in-
clude information on how long a specific event takes.

functional perspective The functional perspective deals with the ac-
tivities or elements of a process. It is a top view of all the elements that
are performed, and what informational objects are relevant to a specific
case.

data perspective The data perspective deals with additional attributes
attached to events or cases of a process that further characterize the
corresponding element. Data attributes may be of various types and
degree of detail. They may also contain routing information about how
cases are executed.

goal perspective The goal perspective deals with the objectives to achieve
from different point of views. From a process mining perspective, these
point of views can be divided into the resource viewpoint, that refers to
the goals behind activities resource (e. g., an employee) are executing,
the process viewpoint, that refers to the goals of an entire trace, and
the organization viewpoint, that refers to the overall goal executing the
business process [GA19].

The five process-oriented modeling perspectives primarily focus on "how",
"what", "where", "who", and "when" related aspects of the process, whereas
the goal-oriented perspective focuses on "who", "what", and especially "why"
the process is executed [GA19].

2.3 Process Mining

Process mining is a set of techniques which analyze event logs of PAIS to
obtain a better understanding of how processes are executed [Aal11]. It
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Figure 2.2: Overview of the three tasks of process mining: process discovery, confor-
mance checking, and enhancement. Adapted from [Aal11].

provides valuable insights that help to improve the execution of processes or
unveil potential compliance issues. Process mining is typically categorized
into three major tasks, as shown in Figure 2.2: process discovery, conformance
checking, and enhancement [Aal11].

2.3.1 Process Discovery

Process discovery deals with the automatic construction of an as-is process
model solely based on the events observed in an event log. Different algo-
rithms were developed to accurately reconstruct a process model from an
event log.

Figure 2.3 shows a cut-out of a the graph automatically constructed from the
event log of the BPI Challenge 2019 [Don19]. It is constructed by investigating
the directly-follows relationships between activities. Transitions are labeled
with the absolute frequency observed in the event log. The graph shows
certain patterns, for example, that the activity "Create Purchase Order Item"
is directly followed by "Vendor creates Invoice", or that the activity "Record
Goods Receipt" is executed several times in a row.
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Figure 2.3: Directly-follows graph of a small sample of the BPI Challenge 2019 event
log.

However, the directly-follows graph is missing important information, e. g.,
parallelism of activities. More advanced process discovery algorithms such
as the Inductive Visual Miner [LFA14a] lead to more informative models.
Figure 2.4 shows the process model of the same event log cut-out with the
Inductive Visual Miner. The process model indicates parallel activities using
the AND-gate, depicted as a diamond with the plus-symbol.

Figure 2.4: Process model obtained with the Inductive Visual Miner [LFA14a] of a
small sample of the BPI Challenge 2019 event log.

2.3.2 Conformance Checking

Conformance checking deals with the identification and quantification of
deviations between the actual execution behavior in an event log and the
modeled behavior in a process model. The process model can be created
manually or discovered automatically. Conformance checking aims to relate
events of the event log to the activities in the process model with the goal to
find commonalities and differences.



2.4 process discovery 19

Figure 2.5: Conformance checking result showing deviations on top of a process tree
obtained with the Inductive Visual Miner from a small sample of the BPI
Challenge 2019 event log.

Figure 2.5 illustrates the deviations between an event log and a process model
using the Inductive Visual Miner [LFA14a]. Deviations are indicated by the
red dotted lines. For example, we can see that many cases of the event log do
not follow the process model and bypass activities of the process model.

2.3.3 Enhancement

In context of process mining, enhancement denotes the task of updating an
existing process model based on pertinent information derived from event
logs in order to better reflect reality. For instance, the result of conformance
checking may be used to update existing process model reflecting the behavior
that is observed in reality.

Figure 2.6: Performance overview on top of a process tree obtained with the Inductive
Visual Miner from a small sample of the BPI Challenge 2019 event log.

Another enhancement technique is to evaluate the performance of a pro-
cess by inspecting the throughput times of activities. Figure 2.6 shows the
throughput times of the BPI Challenge 2019 event log annotated to the pro-
cess model. Darker red nodes indicate longer duration times of activities, and
lighter red nodes indicate shorter activity duration times.

2.4 Process Discovery

Process discovery automatically constructs process models that describe the
actual behavior of a process in an organization. Different from conventional
interview-based methods for obtaining such process models, process discov-
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ery uses digitally recorded event data from PAISs to reconstruct the actual
execution. The underlying assumption of process discovery is that informa-
tion systems capture events related to a particular case. The goal of process
discovery is to construct process models that reflect the actual execution of a
process in the most compact and accurate representation.

At the time of writing, process discovery is often the first major undertaking
process analysis task because it does not require any prior knowledge about
the process under review. It takes an event log as input to discover process
models that are visually inspected by analysts. Besides the visual inspection,
discovered process models often build the basis for further analysis to obtain
interesting knowledge about the executed process.

A wide range of different process discovery algorithms has been developed. A
selection of developed process discovery algorithms is listed in the following:

• α-algorithm: One of the first workflow pattern based process discovery
algorithm was introduced by van der Aalst et al. [AWM04]. The α-
algorithm utilizes the directly-follows relation to reconstruct process
models.

• Heuristics Miner: As the name suggests, the Heuristics Miner [WR11]
applies specific heuristics to detect infrequent behavior, parallel execu-
tions, loops, and long term dependencies between activities. A detailed
description is given in Section 2.4.2.

• Inductive Visual Miner: Typically, event logs contain cases that follow
many different traces, and some traces are less frequent than others.
This infrequent behavior is a challenge for discovery algorithms because
including or excluding them affects the quality of the process model (see
Section 2.5.1.3). The inductive miner [LFA14a] discovers process models
according to the Pareto principle. Essentially, 80% of the observed
process behavior can be described by a model that contains only 20% of
the model required to describe the entire process behavior. As a result,
the process model only contains the most frequent behavior of the event
log to describe the process.

• BPMN Miner: Unlike other process discovery algorithms that mine
flat process models, the BPMN Miner [Con+16] constructs hierarchical
process models reflecting the different sub-processes contained in the
event log. For discovering the sub-processes, the event log must be
extended by an event type attribute indicating the task that produced
the event. The sub-processes are then discovered using other flat process
discovery algorithms.

• SplitMiner: One of the most recent discovery algorithms is called Split-
Miner [Aug+17]. It is a fast discovery algorithm that filters the directly-
follows graph and detects various combinations of split gateways to
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capture concurrency, conflict, and causal relations. Furthermore, it guar-
antees deadlock-freedom for cyclic process models and soundness for
acyclic process models.

A systematic comparison of available process discovery algorithm is given
in [Wee+12].

Besides academic process discovery algorithms, a variety of different pro-
cess mining tools are successfully established in the industry. For example,
Fluxicon Disco1, Celonis2, and PAFnow Process Mining3.

2.4.1 Process Map

The simplest form of process discovery is the generation of a directly-follows
graph from an event log, also called process map. A process map is a directed
graph where the nodes represent the activities and the edges represent
the transitions between activities. An edge is added to the process map if
the corresponding transition is observed at least once in the event log. A
process map may contain activity loops if the event log contains traces with a
repeating sequence of activities. We define a process map as follows:

Definition 2.9 (Process Map). A process map is a directed graph P =

(N∗, E∗) with N∗ being the set of activities and E∗ the set of transitions be-
tween activities. Each process map consists of a unique start activity sp ∈ N∗

and a unique end activity ep ∈ N∗. A transition between two activities is a
tuple ei = (nsrc, ndest) with ei ∈ E∗, nsrc ∈ N∗, and ndest ∈ N∗.

Every event log can be converted into a process map using the following
formalization:

Definition 2.10 (Event Log to Process Map). Let L be an event log according
to Definition 2.7, then the process map is defined as P = (N∗, E∗) with

N∗ = {(e) | c ∈ L ∧ e ∈ ĉ}

∪ {sp, ep}
E∗ = {(a1, a2) | c ∈ L ∧ a1 = (ĉ(i)) ∧ a2 = (ĉ(i + 1)) ∧ 0 < i < |ĉ|}

∪ {(sp, (ĉ(1))) | c ∈ L}

∪ {((ĉ(|ĉ|)), ep) | c ∈ L}

1 Commercial tool for process discovery; available at: https://www.fluxicon.com/
2 Commercial tool with Business Intelligence (BI) capabilities; available at: https://www.

celonis.com/

3 Commercial tool for process mining, integrated in Microsoft PowerBI; available at: https:
//www.pafnow.com/

https://www.fluxicon.com/
https://www.celonis.com/
https://www.celonis.com/
https://www.pafnow.com/
https://www.pafnow.com/
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The resulting process map contains all observed activities and transitions of
the event log. The start and end activities are explicitly identified by adding
two synthetic activities sp, ep to the process map.

It is noteworthy that a process map describes far more process behavior
than originally observed in the event log which leads to less precise process
models (see Section 2.5.1.3). For example, let L = [〈a, b, c, d〉, 〈a, c, b, d〉] be a
simple event log. This event log produces a process map that also allows the
trace 〈a, c, b, c, d〉 although this trace is not contained in L. Many commercial
process mining tools use process maps for visualization because they are
typically easier to understand [LFA14b; LPW19] and they can be computed
very efficiently, in contrast to other process discovery algorithms.

2.4.2 Flexible Heuristics Miner (FHM)

The Flexible Heuristics Miner (FHM) [WR11] is a robust process discovery
algorithm [Wee+12] which inspects the frequency of transitions to generate
process models. Essentially, frequent transitions are "kept" while infrequent
transitions are "ignored". The discovered process model only contains the
most frequent process behavior that is observed in the event log. The resulting
process model is called causal net (C-net), it is constructed as follows.

First, the FHM constructs a Dependency Graph (DG) which contains informa-
tion about the frequency of the directly-follows relationship (see Section 2.4.1).

Definition 2.11 (Direct Successor Relation [WR11]). Let Σ be the set of activ-
ities, t ∈ Σ∗ be a trace of a simple event log L ⊆ Σ∗, and a, b ∈ Σ. Then the
direct successor relation a >L b is defined as follows:

a >L b if there exists a trace t = 〈t1, ..., tn〉 and i ∈ {1, ..., n− 1} such that
t ∈ L, ti = a, and ti+1 = b, i. e., a is directly followed by b.

Then, the DG is constructed by counting the number of directly-follows
relationships observed in the event log.

Definition 2.12 (Dependency Measure [WR11]). Let L be a simple event log
with the set of activities Σ, a, b ∈ Σ, and |a >L b| the number of times a >L b
(direct successor) occurs in L.

a⇒L b =


|a>Lb|−|b>La|
|a>Lb|+|b>La|+1 a 6= b
|a>La|
|a>La|+1 a = b

(2.1)

High values of a⇒L b indicate a strong dependency relation between activi-
ties, whereas low or negative values indicate a weak dependency relation.
From the dependency measures, a dependency graph is constructed that
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only contains the relations that fulfill a certain threshold, also called the
dependency frequency. The default threshold that is widely established is
0.9 [WR11].

Definition 2.13 (Dependency Graph). The causal dependency graph is a
tuple DG = (Σ, E), where Σ is the set of activities in the simple event log L,
and E ∈ (Σ× Σ) the edges that correspond to the directly-follows relation
between activities. Each edge in the dependency graph is constructed from
the dependency measures described in Definition 2.12 and annotated with
the corresponding dependency measure value.

The DG contains information about the dependencies between activities,
but it does not describe whether activities are executed in parallel or not.
Therefore, a C-net is generated from the DG that characterizes the behavior
of a split, i.e., if the split is an AND- or an XOR-split.

Definition 2.14 (C-net [AAD11; WR11]). A C-net is a tuple (Σ, I, O), where

• Σ is a finite set of activities,

• I : Σ → P(P(Σ) → N) is the input frequency function for a given
activity,

• O : Σ → P(P(Σ → N)) is the output frequency function for a given
activity.

A split in the C-net is defined as an input and output frequency function that
return the number of times a transition is observed in the event log. For each
activity in the C-net that has more than one output activity, the FHM counts
if certain output activities are executed together in a trace, or not. Using this
information, the FHM decides between an AND- or an XOR-split:

• If for the majority of traces the output activities are executed within the
same trace, the FHM concludes a parallel-split.

• Otherwise, the FHM concludes an XOR-split.

The same strategy is applied to detect the joins, however, traces are replayed
backward. For the sake of brevity other heuristics that further improve the
result of the FHM such as the length-two loops, long-term dependency, or the
relative-to-best heuristics are not discussed here.

Example 2.2 shows the application of the FHM to a simple event log.
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Example 2.2

Let L = [〈a, b, c, d, e, g〉10, 〈a, c, b, d, f , g〉10, 〈a, g〉3] be a simple event log,
containing 23 traces. Table 2.2 shows the number of times one activity
is directly followed by another activity, according to Definition 2.11.
For instance, a is directly followed by b, |a >L b| = 10.

|a >L b| a b c d e f g

a 0 10 10 0 0 0 3

b 0 0 10 10 0 0 0

c 0 10 0 10 0 0 0

d 0 0 0 0 10 10 0

e 0 0 0 0 0 0 10

f 0 0 0 0 0 0 10

g 0 0 0 0 0 0 0

Table 2.2: Frequency of the directly-follows relation |a >L b| of the event log
L.

The results of applying the dependency measure (Definition 2.12) to
the event log L is shown in Table 2.3.

a⇒L b a b c d e f g

a 0 0.91 0.91 0 0 0 0.75

b -0.91 0 0 0.91 0 0 0

c -0.91 0 0 0.91 0 0 0

d 0 -0.91 -0.91 0 0.91 0.91 0

e 0 0 0 -0.91 0 0 0.91

f 0 0 0 -0.91 0 0 0.91

g -0.75 0 0 0 -0.91 -0.91 0

Table 2.3: Dependency measure between the activities of the event log L.

The last step is to detect the split and joins in the C-net. Figure 2.7 shows
the C-net with the identified AND-splits, indicated by the bindings
between transitions. Based on the information stored in the event log
L we can observe that activity a is followed by both b and c. In the
C-net this is denoted by the frequency output function of activity a, i. e.,
O(a) = {{b, c}20}. Analogue, we can observe that activity d is followed
by either e or f , i. e., O(d) = {{e}10, { f }10}.
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Figure 2.7: C-net derived from the event log L. The nodes indicate the activity and
their frequency in the log. The edges refer to the directly-follows relation,
labeled by their frequency and dependency measure.

2.4.3 Process Model Quality Dimensions

For evaluating the resulting process model from a process discovery algo-
rithm, four main quality dimensions have been established in the literature:
fitness, precision, generalization, and simplicity [BDA14; Aal16]. The first three
dimensions relate to the quality of the process model with respect to the
event log and vice versa. Simplicity measures how easy it is for a human to
understand the process model, e. g., how many activities and transitions are
contained in the model. Although all four quality dimensions are equally
important, they are sometimes conflicting with each other. Typically, all four
quality dimensions should be balanced.

The Venn diagram by Buijs et al. [BDA14] in Figure 2.8 compares the behavior
described by the process model with the behavior observed in the event log
and the actual behavior of the real process, i. e., the system being analyzed.
The diagram shows seven areas that can be described as follows: (1) modeled
and observed behavior, i. e., system behavior that is observed and described
by the model, (2) unmodeled exceptions, i. e., observed behavior that is
non-system behavior and not supported by the model, (3) modeled and
observed exceptions, (4) modeled but unobserved and non-system behavior,
(5) modeled but unobserved system behavior, (6) unmodeled and unobserved
system behavior, and (7) unmodeled but observed system behavior.

From this figure, the four quality dimensions are derived which are intro-
duced in the following.
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Figure 2.8: Venn diagram illustrating the relations between the behavior of the
process model, the observed behavior in the event log, and system’s
behavior. Adapted from [BDA14].

2.4.3.1 Fitness

The fitness quality dimension measures the ability to replay an event log
by the process model, i. e., it is the proportion of observed and modeled
behavior ((1) + (2)) in the total observed behavior ((1) + (2) + (3) + (4)). If
all traces can be entirely replayed by the process model, i. e., if all events and
transitions of the event log are described by the process model, this model
has a perfect fitness.

Definition 2.15 (Fitness). Let σ be a trace of log L, and M a process model,
then f itness(σ, M) ∈ [0, 1]. The function f itness(σ, M) = 1, if the trace σ ∈ L
can be entirely replayed by the model (i. e., from the start to the end), and
f itness(σ, M) = 0, if the trace cannot be replayed.

In this thesis, we only consider the control flow of the event log to calculate
the fitness of a process model. In order to check if a trace can be replayed by
the model, we compute trace alignments [Man+15]. A trace alignment is a
mapping between the process model and a trace recorded in an event log.
It describes mismatches and matches between the event log and the process
model. For example, events may be missing in the process model, denoted as
log moves, or events may be missing in the event log, denoted as model moves.
If an event of the event log can be matched with an event in the process
model, it is denoted as a synchronous move. A trace that can be fully replayed
by the process model has a trace alignment containing only synchronous
moves.
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2.4.3.2 Precision

Precision is a measure indicating how much behavior is allowed by a process
model that is not observed in the event log, i. e., it is the proportion of
observed and modeled behavior ((1) + (2)) in the overall modeled behavior
((1) + (2) + (4) + (5)). While fitness indicates the proportion of traces that
can be replayed by the process model, a process model should also precisely
describe the observed behavior [MC10]. Specifically, the process model ideally
does not allow more behavior than what is observed in the event log. Behavior
that is allowed by the model but is not observed in the event log leads to a
less precise process model.

This thesis relies on the technique proposed in [MC12]. In order to estimate
the precision of a process model, the technique first computes the prefix
automaton of an event log. The prefix automaton is a tree that contains
information about occurrences of a prefix s in the log L. The second step is to
extend the prefix automaton at each step of the traversal with the behavior
that is allowed by the model. In particular, transitions that are allowed by the
model are added to the prefix automaton. The deviations of the model and
the event log are all the transitions in the extended prefix automaton with an
occurrence of zero, i. e., they are allowed by the process model but are not
observed. These newly added transitions are called escaping edges. Escaping
edges that are further branched are called inner escaping edges.

Definition 2.16 (ETC Precision Measure [MC12]). Let L be an event log, M is
the process model, T̂S is the extended prefix automaton of L with inner and
escaping states (Iγ

S , Eγ
S ) on a threshold parameter γ ∈ [0, 1]. The precision

measure is then defined as:

precision(γ, M) = 1−
∑s∈Iγ

S
(|Eγ

S (s)| · s#)

∑s∈Iγ
S
(|avail(s, M)| · s#)

(2.2)

were avail(s, M) is the set of available activities according to the model M
after executing the activity sequence s, and s# being the number of occurrences
of the sequence s.

2.4.3.3 Generalization

Generalization indicates whether a process model is overfitting, meaning that
the generated model is very specific to the observed behavior. Event logs
are likely to contain only a sample of the process, so a different event log of
the same process may produce a different process model [Aal16]. A process
model that accurately models the behavior of a process and at the same time
replays different event logs of the same process has a high generalization.
The calculation of the generalization measure is quite challenging because all
possible event logs of the process model need to be considered, depicted as
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area (4) of Figure 2.8. In literature, there is no agreement on a measure that
adequately measures the degree of generalization. For this reason, this thesis
does not investigate the generalization of process models.

2.4.3.4 Simplicity

In contrast to the other three quality dimensions, which measure the accuracy
and quality of the process model behavior, simplicity focuses on the structural
elements of a process model. In particular, it is always desirable to obtain
a process model that is easy to understand but also explains the observed
behavior of an event log accurately. However, both objectives are sometimes
contradictory, as reality may be complex and difficult to model.

The simplicity of a process model is typically measured by the number of
activities and transitions [Aal16]. In graph theory, several measures are used
that describe the density of the graph, the in- and out-degree of nodes,
and the network degree. These have turned out to be valuable measures
for determining the simplicity of the process model and for describing the
comprehensibility of process models for humans [MRC07].

In this thesis, the following simplicity metrics are considered:

1. Number of activities |Σ|

2. Number of transitions |E|

3. Inverse Arc Degree [Blu15]:

Inverse arc degree =
1

1 + |Σ|
|E|

(2.3)

2.5 Data Mining

In the context of this thesis, data mining is defined as "the process of discovering
interesting patterns and knowledge from large amounts of data" [HKP11]. Many
approaches discussed in this thesis use existing data mining techniques to
obtain such interesting patterns and knowledge from event logs. This section
introduces cluster analysis (see Section 2.5.1) and frequent pattern mining
methods (see Section 2.5.2) which are later used in this thesis.

2.5.1 Cluster Analysis

Cluster analysis or clustering [WFH11; HKP11] is an unsupervised data
mining technique which partitions a set of objects into smaller subsets without
existing labels. Clustering aims to group objects so that the similarity of
objects within each subset is as high as possible, but the similarity of objects
from different subsets is as low as possible.
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Figure 2.9: Illustration of the k-means algorithm, showing the initial clustering, the
iteration step, and the final clustering. The plus (+) indicates the center
of a cluster. Adapted from [HKP11].

Identified subsets can be expressed in different ways [WFH11]. Subsets are ex-
clusive, i. e., an object is only grouped into a single subset, they are overlapping,
i. e., an object may be grouped into multiple subsets, they are probabilistic, i. e.,
objects belong to a subset with a certain probability, or they are hierarchical,
i. e., objects belong to a hierarchically ordered subset. Although a precise
categorization of clustering methods is difficult, the major fundamental clus-
tering methods can be classified into four categories [HKP11]: partitioning
methods (Section 2.5.1.1), hierarchical methods (Section 2.5.1.2), density-based
methods, and grid-based methods.

2.5.1.1 Partitioning Methods

Partitioning clustering methods divide a set of objects into a fixed number of
exclusive subsets. Let D be a set of n objects, and k be the number of clusters
to generate. A partitioning clustering algorithm divides the dataset into k
partitions or clusters. Each partition contains objects which are similar to
each other, based on a similarity function, but dissimilar to objects in other
clusters [HKP11].

The most well-known and widely used partitioning method is k-means. It is a
centroid-based partitioning method that starts with k centroids and iteratively
optimizes the clusters and partitions of the dataset. For a given dataset D of
n objects, k-means partitions the objects of D into k clusters C1, ..., Ck such
that Ci ⊂ D and Ci ∩ Cj = ∅ for 1 ≤ i, j ≤ k (each cluster is a subset of the
dataset, and clusters are exclusive). Algorithm 1 shows the main steps of the
k-means cluster algorithm.

The k-means algorithm gets the dataset D as well as the number of clusters
k as the input. Initially, the algorithm randomly selects k objects from the
dataset as a cluster center (Line 1). Next, each object ~d ∈ D is assigned to the
cluster Ci to which its similarity value is the highest (Line 3). To determine
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Algorithm 1: k-means Partitioning Algorithm
input : k ∈N: the number of clusters

D: the dataset of n objects
output : A set of k clusters

1 k objects from D are selected randomly as the initial cluster centroids.
2 repeat
3 assign each object ~d ∈ D to the cluster ci ∈ C with the highest similarity
4 update the cluster center for each cluster
5 until no change;

the closest cluster, the k-means algorithm calculates the distance dist(~p,~ci)

for an object ~p ∈ Ci to the cluster centroid ~ci, where dist(~x,~y) : D× D → R

is the distance function (e. g., the Euclidean distance) between two points
~x,~y ∈ D. After each object ~d ∈ D is assigned to a cluster, the k-means
algorithm updates the cluster centers by building the mean values of the
objects assigned to the cluster (Line 4). The process continues as long as
the assignment of objects to clusters changes. The algorithm terminates if
each object of the dataset is assigned to the same cluster as in the previous
iteration. An illustration of the iterative steps is shown in Figure 2.9.

2.5.1.2 Hierarchical Methods

Different from partitioning methods, where each object of a dataset is assigned
to exactly one cluster, hierarchical clustering methods [HKP11] organize
clusters in different levels of abstraction. These different abstraction levels
can be beneficial in scenarios where objects are organized as a hierarchy. Two
representative hierarchical methods are agglomerative and divisive hierarchical
clustering (see Figure 2.10) which use a bottom-up or a top-down strategy
to assign objects to a cluster. In the following, agglomerative hierarchical
clustering is introduced because it is used for the multi-perspective trace
clustering algorithm (see Chapter 6).

The fundamental idea of agglomerative hierarchical clustering is that each
object is first assigned to an individual cluster. These individual clusters
are then iteratively merged based on how similar objects are according to a
distance function. Clusters that are closest to each other are merged until all
clusters are merged with the root cluster.

There are multiple measures, the linkage measures, to determine the distance
between clusters [HKP11; WFH11]:

• Single-linkage returns the distance of the objects of the clusters that
are the closest together:

distmin(Ci, Cj) = min
~p∈Ci ,~p′∈Cj

(|~p− ~p′|) (2.4)
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Figure 2.10: Illustration of the two hierarchical clustering methods: agglomerative
and divisive hierarchical clustering. Adapted from [HKP11].

• Complete-linkage returns the distance of the objects of the clusters that
are the most far away:

distmax(Ci, Cj) = max
~p∈Ci ,~p′∈Cj

(|~p− ~p′|) (2.5)

• Centroid-linkage returns the distance of the mean point of the clusters:

distmean(Ci, Cj) = |~mi − ~m′j| (2.6)

• Average-linkage returns the average distance between all objects of the
one cluster to the objects in the other cluster:

distavg(Ci, Cj) =
1

ninj
∑

~p∈Ci ,~p′∈Cj

|~p− ~p′| (2.7)

• Ward linkage calculates how much the sum of squares will increase
when clusters are merged:

distward(Ci, Cj) =
ni · nj

ni + nj
|~mi − ~mj|2 (2.8)

|~p−~p′| refers to the distance between the two objects ~p and ~p′ of the dataset,
~mi is the mean for cluster Ci, and ni is the number of objects in a cluster Ci.

2.5.1.3 Clustering Quality Metrics

For evaluating the quality of the resulting clusters, two types of quality met-
rics can be used, depending on the availability of ground truth labels [HKP11].
In cluster analysis, ground truth is the ideal clustering of the data, often ob-
tained by human experts.
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• Extrinsic methods (e. g., Adjusted Rand Index, BCubed Precision and
Recall) evaluate the result of the algorithm by comparing it with ground
truth labels.

• Intrinsic methods (e. g., Silhouette Coefficient) evaluate the quality of the
clusters by inspecting the separation of clusters if the ground truth is
not available.

Adjusted Rand Index The Adjusted Rand Index (ARI) [HA85] is an extrin-
sic quality metric that compares the objects of the cluster in pairs and solves
issues of the original Rand Index (RI) [Ran71; MRS08]. It is computed as
follows:

ARI(C, C′) =
∑ij (

nij
2 )− [∑i (

ai
2)∑j (

bj
2)]/(

n
2)

1
2 [∑i (

ai
2) + ∑j (

bj
2)]− [∑i (

ai
2)∑j (

bj
2)]/(

n
2)

(2.9)

where ai = |Ci| the number of objects in cluster Ci, bj = |C′j| the number of
objects in the ground truth cluster C′j and nij the entry of the contingency
table. The contingency table stores the frequency of objects that are in cluster
Ci and should be in ground truth cluster C′j.

BCubed Precision and Recall BCubed precision and recall are extrinsic qual-
ity metrics that fulfill all four essential extrinsic evaluation criteria [HKP11]:

• Cluster homogeneity: clusters should only contain objects of the same
ground truth cluster

• Cluster completeness: objects that belong to the same cluster according to
the ground truth should be in the same cluster

• Rag bag: objects that cannot be merged with other objects should be put
into a separate "miscellaneous" cluster

• Small cluster preservation: ground truth clusters with small number of
objects should not be further split into smaller clusters than larger
clusters

Precision and recall are defined for every object in a clustering. The precision
of an object is defined as how many other objects of the same cluster belong
to the same class as the object, given by the ground truth.

BCubed Precision =
∑|D|i=1

∑~dj :i 6=j,C(~di)=C(~dj)
correctness(~di ,~dj)

||{~dj :i 6=j,C(~di)=C(~dj)}||

|D| (2.10)

The recall of an object is defined as how many objects of the same class, given
by the ground truth, are assigned to the same cluster.

BCubed Recall =
∑|D|i=1

∑~dj :i 6=j,L(~di)=L(~dj)
correctness(~di ,~dj)

||{~dj :i 6=j,L(~di)=L(~dj)}||

|D| (2.11)
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L(~di) returns the class of ~di from the ground truth, and C(~di) returns the
cluster identifier of ~di. Furthermore, the correctness of the relation between
~di and ~dj is defined as:

correctness(~di, ~dj) =

1 if L(~di) = L(~dj)↔ C(~di) = C(~dj)

0 otherwise
(2.12)

Silhouette Coefficient The silhouette coefficient [Rou87] is an intrinsic qual-
ity metric that calculates how similar the objects are to other objects in their
subset according to a distance function, compared to the objects of other
subsets. It returns a value between −1 and 1, indicating whether the objects
fit into their assigned cluster or not. This metric is often used to determine
the optimal number of clusters.

It is defined as follows: Let a(~d) be the average distance of an object ~d ∈ D to
all other objects of a cluster A, and let b(~d) be the minimum average distance
of ~d to all other clusters. Then, the silhouette is defined as:

s(~d) =
b(~d)− a(~d)

max(a(~d), b(~d))
(2.13)

The silhouette coefficient is then calculated for each cluster Ci ∈ C:

sCi =
1
|Ci| ∑

~ci∈Ci

s(~ci) (2.14)

2.5.2 Frequent Pattern Mining

Frequent pattern mining is an unsupervised data mining technique that
searches for recurring patterns or relationships in a dataset [HKP11]. A fre-
quent pattern is a pattern, such as itemsets (i. e., a set of items), sequences, or
structures, that occur frequently in the dataset. For example, in a transaction
history of shopping carts, milk and bread would probably be a frequent itemset
because they are usually bought together.

A set of k items is called an k-itemset, e. g., the set {milk, bread} is a 2-itemset.
Let I = {I1, ..., Ik} be a k-itemset and D be a set of database transactions
where each transaction T is a non-empty itemset T ⊆ I . We denote all k-
itemsets of a transaction database D as Lk. The support of an itemset I in D is
the percentage of transactions in D that contain all items of I. If the support
of an itemset I satisfies a selected minimum support threshold (θ), then the
itemset is frequent.

Applying frequent itemset mining to large transaction databases is a major
challenge because the number of itemsets that satisfy the minimum support
threshold can become huge. This is because all subsets of a frequent itemset
are also frequent. In order to deal with this issue, the concepts of closed
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frequent itemsets and maximal frequent itemsets are introduced. An itemset X
in D is closed if there exists no proper super itemset Y4 that has the same
support as X in D. An itemset X is a maximal frequent itemset of D if there
exists no super itemset Y such that X ⊂ Y and Y is frequent in D.

Example 2.3

Consider D = {{a1, a2, ..., a5}, {a1, a2, ..., a10}} as the transaction database
containing only two transactions. If we set the minimum support thresh-
old to 1, we find two closed frequent itemsets: {a1, a2, ..., a10} with the
support of 1 and {a1, a2, ..., a5} with the support of 2. There is only one
maximum frequent itemset {a1, a2, ..., a10} with the support of 1.

2.5.2.1 Apriori Algorithm

The Apriori algorithm [AIS93] is an iterative algorithm that searches for
frequent itemsets in large transaction databases. It uses the k-itemsets to
search for (k+1)-itemsets. The algorithm starts to search for 1-itemsets by
scanning the database and counting the number of occurrences. If the itemset
satisfies the minimum support threshold, the itemset is kept, otherwise, it
is removed. After the algorithm found all frequent 1-itemsets, it searches
for 2-itemsets by only considering the frequent 1-itemsets. The algorithm
terminates if no more k-itemsets are found.

The Apriori algorithm makes use of an important property: "All nonempty
subsets of a frequent itemset must also be frequent." [HKP11]. It is based on the
observation that the support of an itemset cannot be higher than the support
of its super itemset. So if an itemset is not frequent, none of its subsets can be
frequent either. This property reduces the search space for frequent itemsets
in the transaction database. The Apriori algorithm consists of two steps:

1. Join: In the first step, the algorithm generates a set of candidate k-
itemsets Ck by joining Lk−1 with itself. The algorithm only joins itemsets
with at least (k− 2) equal items, such that only one new item is added
to the itemset.

2. Prune: In the second step, the candidate itemsets Ck are pruned because
they may contain itemsets that are not frequent. All frequent itemsets,
i. e., all k-itemsets with minimum support of θ, are included in Ck.
To prune the candidate k-itemsets, the Apriori property is used: Any
(k− 1)-itemset that is not frequent cannot be a subset of a frequent k-
itemset. Thus, any (k− 1)-itemset of the candidate k-itemset is removed
if it is not in Lk−1.

4 The itemset Y is a proper super itemset of the itemset X if X is a proper sub-itemset of Y, i. e.,
X ⊂ Y.



2.5 data mining 35

The algorithm terminates if no new k-itemset can be found that satisfies the
minimum support threshold. As a result, the Apriori algorithm returns the
frequent itemsets with at least a support of θ.

Example 2.4

Let L3 = {{a, b, c}, {a, b, d}, {a, b, e}, {a, c, d}, {a, c, e}, {b, c, d}} be the
set of 3-itemsets and the input of the Apriori algorithm. In the join step,
the algorithm joins L3 with itself. The algorithm only joins pairs of 3-
itemsets with at least 2 equal items, which results in the following candi-
date 4-itemsets set: C4 = {{a, b, c, d}, {a, b, c, e}, {a, b, d, e}, {a, c, d, e}}.
The prune step will remove {a, b, c, e}, {a, b, d, e}, {a, c, d, e} from C4 be-
cause {b, c, e}, {b, d, e}, {c, d, e} are not in L3 and, therefore, cannot be
frequent and fulfill the minimum support threshold. The result of the
Apriori algorithm is L4 = {{a, b, c, d}}.

2.5.2.2 FP-Close Mining Algorithm

Different from the Apriori algorithm, which searches for all frequent itemsets
in a transaction database, the FPclose algorithm [GZ05] searches for closed
frequent itemsets. The method is based on the iterative FP-Growth algo-
rithm [HPY00] that uses a tree data structure, the FP-tree (frequent pattern
tree), to maintain the frequency of itemsets. The FP-tree has a root node,
labeled with null, and for each transaction a new branch is generated as
follows: The items of the transaction are sorted by their absolute frequency
in the entire transaction database. For each item, a node is generated in T
which is linked to its predecessor, i. e., the item within a transaction that is
more frequent. The most frequent item in a transaction is linked to the root
node of T. Branches which share the same prefix, i. e., the same items in the
same order, are merged together by increasing the corresponding frequencies
of the prefix nodes. New nodes are generated for each item that is not yet in
the tree, and linked to the prefix accordingly.

The FP-close algorithm additionally maintains a header table T.header which
stores the frequency of the single items of the transaction database. The
header table contains a link to the head of a linked list that points to the
corresponding nodes in the FP-tree. Figure 2.11 shows an example FP-close
tree with the corresponding header table.

For extracting the frequent itemsets, conditional FP-trees TX are generated
from the FP-tree T, containing only itemsets that contain X. The FP-Growth
algorithm relies on the principle that the count of the union of two itemsets
X ∪ Y is the count of the itemsets Y that contain X. Given an item i in the
header table, the algorithm follows the linked list that points to the branches
in the FP-tree. Following the linked branches to the root node of the tree
(X ∪ {i}), reveals the itemsets that contain i. To generate a conditional FP-tree
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Figure 2.11: FP-close tree for a transaction database with the corresponding header
table. Adapted from [HKP11]

TX∪{i} that only contains the frequent itemsets of i, a new header table is
generated from all followed branches in TX that contain i. The header table is
only filled with items that fulfill the minimum support threshold. Then, the
branches of the FP-tree TX are visited along the linked list of i to insert nodes
and edges in the conditional FP-tree TX∪{i}. The FP-Growth algorithm starts
by mining the frequent itemsets for the empty itemset, denoted as T∅.

In order to obtain closed frequent itemsets, a separate CFI-tree (closed fre-
quent itemset tree) and a corresponding CFI header table are built for each
itemset X, denoted as CX. Each node in the CFI-tree stores information about
the item-name, count, node-link, and level. The level is used for subset testing.
The count is used to identify if an itemset is closed or not, i. e., there exists
no proper superset which has the same support. Similar to the insertion of
itemsets into the FP-tree, itemsets are added to the CFI-tree only if the itemset
is closed. Instead of increasing the count of the node, the count is updated by
the maximal count. The CFI-tree C∅ and the CX are merged in each iteration,
so the empty CFI-tree contains the closed frequent itemsets after termination.

2.6 Summary

This chapter introduced background knowledge such as basic mathematical
notations, expressions, data and process mining algorithms, and the notation
for event logs. First, we introduced the notation for multi-sets and sequences
which are used to describe event logs. Event logs build the basis for process
mining and all contributions of this thesis.

Next, we presented the five process perspectives which are essential to obtain
an end-to-end view on a process. In this thesis, we introduce a compliance
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checking method (see Chapter 4) that identifies violations with respect to the
control flow of a process, based on process maps discovered from event logs.
The time perspective is investigated in Chapter 5, which presents a novel pro-
cess drift detection algorithm to identify points in time when process behavior
has changed. Drifts are detected by comparing process models, obtained by
the FHM, of different time periods. A multi-perspective trace clustering algo-
rithm, which incorporates the control flow and the data perspective to find
cases with similar process behavior, is introduced in Chapter 6. The algorithm
analyzes cases attributes by searching for frequent patterns and optimizes
the result by investigating discovered process models.

ProcessExplorer integrates the above contributions and guides analysts
towards interesting findings, obtained from statistical and machine learning
methods. Lastly, Chapter 8 introduces a process optimization algorithm that
provides process model adaptation suggestions based on a process map.
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3
Process Knowledge Artifacts

This chapter introduces the process knowledge artifact framework which
builds the foundation for the subsequent contributions of the thesis. The
framework consists of several building blocks to support and orchestrate
the workflow of analysts in process mining projects. First, the framework
closes the gap between available raw data stored in Process-aware Informa-
tion Systems (PAISs) and the data needed for process mining. Second, our
framework enables analysts to capture process analytical knowledge, i. e., the
tasks that an analyst conducts to investigate a particular process problem, in
a meta-model. In particular, process mining tasks that are often decoupled
from each other can be combined to examine processes regarding typical
questions. Our framework allows analysts to capture analytic knowledge for
reuse, which is not possible with conventional process mining tools.

This chapter is organized as follows. In Section 3.1, a motivating introduction
to the process knowledge artifact framework is given. Next, related work in
the field is introduced (Section 3.2). Afterward, Section 3.3 presents the results
of a requirements analysis, investigating analysis reports of the Business
Process Intelligence Challenge (BPIC). Section 3.4 then presents the details of
the process knowledge artifact framework. Afterward, Section 3.5 reports the
results of a conducted case study. The chapter concludes with the limitations
of the framework, and future work (Section 3.6).

3.1 Introduction and Motivation

The analysis of business processes using process mining requires a high
level of domain knowledge to obtain valuable insights successfully. Although
various efforts [Aal11; Eck+15] have been made to systematize the work of
analysts in process mining projects, most analytical tasks are still conducted
informally. This is mainly caused by the lack of tool support to systematically
capture and maintain process analytical knowledge, e.g., the tasks to evaluate
process performance indicators or validate compliance rules. That is why
process mining projects are typically supported by external consultants with
years of experience in the field [Aal+07].

Let us consider the following scenario, which exemplifies the tasks an analyst
may need to perform in a process mining project.

41
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Mary is an analyst, interested in analyzing the throughput time between
an order and the delivery of goods in a procurement handling process. In
particular, Mary wants to know how many cases take longer than 30 days,
and why these cases take that long. Before process mining can be applied, she
must collect event data of the respective process, which is distributed across
different information systems. Mary has to deal with several data sources,
transforming data into event logs, and linking them together using manually
written scripts to obtain an end-to-end view on the process. In this step, Mary
needs to map and convert raw data to activities, events, and attributes. After
she has prepared the event log, she can use a process mining tool to load
the event log and discover a process model that describes the actual process.
Mary needs to understand the activities and the process flow to compute the
throughput time of the cases. She can then select the cases that take longer than
the desired 30 days. By investigating the attached event and case attributes
manually, Mary can identify potential root-causes.

This simple scenario shows that during the process analysis, Mary has to
perform several tasks that cannot be easily performed without a deep under-
standing of process mining and the process inspected.

Data collection and consolidation. Despite the growth of event data collected
in organizations, obtaining suitable event logs for process mining is a non-
trivial task. As highlighted in the described scenario, event data is often
stored distributed across the organization in relational databases, log files, or
other customized formats. Consequently, analysts must extract and prepare
event logs manually by specifying the actual events and their relationship to a
single process case. Several case studies have shown that data extraction and
preparation can consume up to 90% of the entire project time [LL14] because
it requires extensive domain knowledge [Aal+07] and it is characterized as a
largely manual task.

Process analysis workflow. The actual process analysis workflow depends
on the investigated objectives, i. e., interesting aspects of the process. The
objectives investigated and the domain knowledge of the analyst typically
characterize the analysis tasks performed. Process mining provides a wide
range of different analysis methods, which are mostly decoupled, although
often being used together. Hence, analysts follow a set of manual tasks
or write customized scripts to obtain the desired result. Without a deep
understanding of the underlying methods and a systematic workflow, process
mining results may be error-prone, unreliable, and hard to reproduce.

In this chapter, we introduce the process knowledge artifact framework, which
supports process analysts dealing with the above challenges. The basic idea
is to capture and maintain analytical tasks needed to obtain a specific process
diagnosis result – from the collection of data to the evaluation of the result –
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in a central repository. We introduce a meta-model for process mining tasks
that analysts can use to describe how a particular analysis objective can be
achieved. Different from manually performed tasks or hand-written scripts,
stored analytical tasks in the central repository are executable, reusable, and
extensible. Our framework supports analytical tasks, which can be broken
down into a specific process problem, but can also improve interactive data
exploration.

3.2 Related Work

This section introduces related work in the areas of data collection and
consolidation, and process analysis workflow.

3.2.1 Data Collection and Consolidation

Data collection and consolidation is an essential task in process mining to
build an event log suitable for analysis. It can take multiple iterations, exten-
sive domain knowledge, and time to obtain and consolidate relevant data
from multiple Process-aware Information Systems (PAISs). Extract Transform
Load (ETL) [KC11] is a technique commonly used in Business Intelligence (BI)
applications to extract, prepare, and consolidate data from different sources
for analysis. However, ETL is not specifically designed for process mining
which makes transforming relational data structures, that can be found in
databases of PAISs, into event logs a major challenge. Adding additional
events or attributes requires many manual adjustments to the entire ETL
pipeline.

Ontop and OpenSLEX are two approaches specifically designed for process
mining. Ontop [Cal+17] is an ontology-based data access system (OBDA)
which maps entities of different data sources to domain entities of an ontol-
ogy to describe events, traces, and attributes of a process. This ontology is
specifically designed for process mining to extract event logs from relational
data sources. Similarly, OpenSLEX [MRA18] introduces a meta-model to
map entities of relational databases to event logs represented in the IEEE
standard XES [Ver+11]. It further provides methods to correlate events for
building traces and logs. OpenSLEX can build event logs for different process
perspectives and recommend case notions. An automated and artifact-centric
approach is presented in [NDF13]. The approach automatically extracts event
information, case identifiers, and their interrelationships from relational
databases by applying schema discovery, summarization, log extraction, and
life-cycle discovery.

Obtaining event logs from information systems is still a challenging problem
because existing methods either do not provide easy design capabilities to
deal with relational data structures or are not capable of abstracting the
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technical view. Ontop and OpenSLEX are the two approaches that fulfill
both requirements. However, both methods are not interconnected with the
related process mining analysis tasks, making it difficult to trace an identified
process problem back to the raw data. Furthermore, Ontop requires analysts
to deal with ontology and semantic notation.

3.2.2 Process Analysis Workflow

A wide range of academic and commercial process mining tools, such as
ProM1, RapidProM2, Apromore3, Fluxicon Disco, Celonis, and PAFnow pro-
cess mining, exist on the market to support analysts during their work. Most
of these tools focus on exploratory analysis, in which results are presented
visually. We discuss the details of exploratory analysis in process mining
tools in the related work section of Chapter 7.

Some of these tools also allow the automation of simple process mining
analysis tasks for the inspection of a specific process problem. In Celonis
or PAFnow process mining the calculation of Process Performance Indica-
tors (PPIs) can be automated by designing dashboards with formulas, e. g.,
investigating high throughput time. It is also possible to check the confor-
mance of event logs according to a process model and automatically identify
potential root causes. However, the tasks that can be automated are very
limited. The focus of these tools is the exploratory analysis, searching for
interesting or suspicious process behavior.

A different approach is the Business Process Cockpit [Cas+04], one of the
first attempts to automate the analysis of event data. It consists of concepts
and architectures for automating ad-hoc analysis tasks, such as evaluating
the performance of a process. Instead of visually exploring the data, the
system automatically applies data mining techniques to process executions
and PPIs to identify potential process problems. Furthermore, the system
makes predictions to foresee process problems or areas for optimizations.
A meta-model for defining PPIs is PPINOT [Río+13]. The authors propose
a framework that automatically evaluates the performance of a process by
computing the values of a predefined set of PPIs. Similar approaches are
SENTINEL [Ped+08], which uses ontologies, or Process Data Store [SLB03],
which offers real-time analysis techniques, to quantify process performance
using metrics for process monitoring. However, all these approaches do not
provide an end-to-end perspective on the process and neglect the actual

1 Academic open source process mining tool from the Eindhoven University of Technology;
available at: http://promtools.org

2 Extension to run ProM plugins in RapidMiner; available at: http://promtools.org/doku.
php?id=rapidprom:home

3 Academic open source process mining tool from the University of Melbourne; available at:
https://apromore.org/

http://promtools.org
http://promtools.org/doku.php?id=rapidprom:home
http://promtools.org/doku.php?id=rapidprom:home
https://apromore.org/
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execution of the process, e. g., analyzing a discovered process model from
event logs.

RapidProM [ABZ17] is an extension for RapidMiner4 to enable process mining
capabilities. RapidMiner is a data science platform, enabling the definition
of data science pipelines that analyze data with machine learning or data
mining algorithms. With RapidProM analysts can automate different process
mining tasks by combining different analysis functions. Similarly, analysts
can create custom SQL-like scripts in QPR ProcessAnalyzer to execute a
limited set of process mining tasks, e. g., data extraction from PAISs, data
transformations, and the execution of process discovery. Both approaches
automate certain process mining tasks but these tasks cannot be linked to a
specific process problem that may be of interest to the analyst. These tools
lack a comprehensive methodology to maintain this automation.

Although existing work in this field allows the automation of specific tasks,
these automation workflows are not linked to a particular process problem.
Different from the related work, our process knowledge artifact framework or-
chestrates process mining tasks for either visual exploration or for identifying
specific process problems that can be defined beforehand the analysis.

3.3 Process Mining Tasks Analysis

We analyzed three years (2017 – 2019) of analysis reports of the Business
Process Intelligence Challenge (BPIC) to get a better understanding of what
types of analysis tasks are used by analysts to identify potential process
problems. The results of the analysis provide the basis for the meta-model of
our process knowledge artifact framework (see Section 3.4.2.1). The annual
BPIC is part of the Business Process Intelligence Workshop at the Business
Process Management conference series. Each year a real-life event log from
industry is published with the objective to answer specific questions about
the underlying process. Analysts from academia, students, and professionals
are invited to analyze the event log and submit their findings. The best
submissions are awarded by a jury.

3.3.1 Methodology

We followed the qualitative content analysis guidelines of Mayring [May00]
to inspect the BPIC reports. In total, we inspected 41 analysis reports from
154 different authors. Unlike Klinkmüller et al. [KMW19] who investigate
visual representations or Lopes et al. [LF19] who investigate general methods

4 Commercial platform for data science and machine learning; Website: https://www.

rapidminer.org/

https://www.rapidminer.org/
https://www.rapidminer.org/
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and techniques, we are interested in the actual tasks, analysts have executed
to answer a specific business question.

We group the tasks that analysts performed into six different categories:
general, control flow, organizational, time, functional, and data. Tasks that share
multiple process perspectives are categorized into general. The other five
categories correspond to the five different process perspectives introduced in
Section 2.2.3.

3.3.2 Results

The results for each category are reported in Table 3.1. We list only those
tasks that occurred in at least two BPIC reports.

Task 2019 2018 2017 Total

General

Evaluate logical expressions 12 1 4 17

Perform root-cause analysis 8 2 4 14

Apply clustering algorithms 6 1 7 14

Apply classification algorithms 5 2 6 13

Perform predictive analytics tasks 1 2 7 10

Apply statistical significance testing 2 1 7 10

Perform conformance checking with model 6 1 3 10

Perform conformance checking with rules 7 1 8

Calculate correlations 1 2 3

Rename activities 2 1 3

Detect anomalies in process 2 2

Compare multiple cases 2 2

Control flow perspective

Discover process model from event log 15 2 23 40

Analyze order of activities 15 3 20 38

Filter cases by control flow 12 1 22 35

Analyze start and end activities 14 2 16 32

Analyze sub-processes of the process 12 3 10 25

Analyze process variants 8 1 15 24

Analyze rework activities 12 1 10 23

Group cases by control flow entities 1 10 11

Calculate fitness for process model 7 3 10

Compute the happy-path of the process 6 4 10

Calculate simplicity for process model 5 2 7

Detect process drifts in control flow 3 2 2 7

Calculate precision for process model 2 2 4

Analyze cases by first-time-right criteria 2 1 3

Compare multiple process models 1 1 2
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Task 2019 2018 2017 Total

Organizational perspective

Analyze activities regarding resources 14 1 21 36

Analyze human vs. automatic activities 11 1 14 26

Analyze cases with external entities 14 14

Group cases by resources/organizational entities 4 1 9 14

Filter cases by resources/organizational entities 7 1 3 11

Perform social network analysis 4 6 10

Analyze organizational entities 6 6

Analyze segregation of duty 3 1 4

Time perspective

Calculate throughput time of activities/cases 14 2 23 39

Aggregate time-related entities 12 2 21 35

Analyze activity timestamps 12 1 17 30

Group cases by timestamp/throughput time 5 2 12 19

Filter cases by timestamp/throughput time 7 1 7 15

Analyze cases within a time span 2 2

Functional perspective

Analyze the activity occurrence within cases 15 3 23 41

Count number of cases/events/activities 10 1 16 27

Analyze number of data object occurrence 21 21

Filter cases by functional entities 5 1 14 20

Group cases by functional entities 2 1 5 8

Count the activity co-occurrence 4 4

Data perspective

Aggregate event/case attributes 15 3 23 41

Filter cases by event/case attributes 15 3 15 33

Group cases by event/case attributes 12 2 14 28

Table 3.1: Tasks performed during process analysis grouped by BPI Challenge.

In the following, we report the details of each category.

3.3.2.1 General Tasks

The general category mainly consists of tasks evaluating logical expressions
(e. g., simple mathematical calculations), performing root-cause analysis,
applying clustering or classification algorithms (e. g., searching for similar
cases or finding relations between attributes), performing predictive analytics
(e. g., predicting the outcome of a case), applying statistical significance
testing, or checking conformance. Conformance checking is performed in
two different ways, either a process model is constructed manually, or the
analysts defined a set of rules. Less commonly used process mining tasks are



48 process knowledge artifacts

calculating correlations, renaming of activities, detecting anomalous cases, or
comparing multiple cases with each other.

3.3.2.2 Control Flow Perspective Tasks

In the category control flow, almost all BPIC reports discover a process model
using a process discovery algorithm. These process models are usually an-
alyzed regarding the order of activities, the start and end activities, the
sub-processes the process may have, the different process variants, and the
rework activities (e. g., activities that are executed multiple times). Besides an-
alyzing the characteristics of the process model, analysts filter or group cases
by the control flow. For process models metrics such as fitness, precision, or
complexity are sometimes calculated to evaluate the quality of the discovered
process models. However, these are not used to answer a specific business
question. Furthermore, analysts calculate the happy-path (e. g., the process
variant that occurs most often in the event log), try to detect process drifts
over time, or analyze the first-time-right criteria, i. e., a perfect execution of
the process.

3.3.2.3 Organizational Perspective Tasks

The organizational perspective deals with the entities participating in the
process or executing activities. Here, BPIC reports show that analysts ex-
amine the resources involved, analyze the activities of people or automated
systems, or analyze the parts of the case that involve external entities (e. g.,
customers, or vendors). Cases are grouped or filtered by resources and or-
ganizational entities. A task that we found only in the years 2019 and 2017

of the BPIC is social network analysis, which analyzes the dependencies
between resources in the organization (e. g., handover). Finally, the analysts
also analyzed whether the responsibilities for certain activities are divided in
a compliant manner.

3.3.2.4 Time Perspective Tasks

The main tasks performed regarding the time perspective are the calculation
and aggregation of throughput times of activities or cases. Analysts group or
filter cases by timestamp, throughput time, or time span.

3.3.2.5 Functional Perspective Tasks

The functional perspective mainly deals with the number of occurrences
of activities within cases, and the number of cases, events, and activities.
Furthermore, in 2017 of the BPIC analysts investigated the occurrence of
specific data entities (e. g., the number of orders that are attached to a case).
Analysts also filter or group cases by the functional entities. Finally, the
number of activity co-occurrence was investigated in the BPIC 2019.
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3.3.2.6 Data Perspective Tasks

The last perspective, data, mainly deals with the aggregation of event and
case attributes, and the filtering or grouping of cases by attributes.

3.4 Framework

In this section, we introduce the process knowledge artifact framework. It
supports analysts during their process analysis work with process mining in
two aspects: data collection and consolidation, and process analysis workflow.
The basic idea of our framework is derived from the observation that many
process mining projects start from scratch without reusing previous work.
However, the analysis of a specific process often focuses on the same aspects.
For example, in a procurement handling process analysts typically check if
purchase orders are approved before they are sent to the vendor, or they
check if invoices are paid on time to avoid discount lost. Although the process
may be executed differently in organizations, a large set of business questions
are still the same.

We propose the concept of Process Knowledge Artifacts (PKAs), which are
small and self-contained components that store and maintain process analysis
knowledge of a particular process problem. The idea is that a PKA stores
information about what raw data fields of PAISs are needed, how data needs
to be transformed for process mining, what analysis tasks are required to
identify a particular process problem, and how results of process mining
algorithms are evaluated. Typical process problems can be modeled as a PKA
for automated evaluation. A PKA consists of two independent abstraction
layers to describe process-relevant knowledge:

1. The data collection and consolidation layer stores information about
the PAISs involved in the process. Particularly, we introduce a data
transformation meta-model that transforms data from multiple het-
erogeneous data sources into a single event log for the analysis with
process mining (see Section 3.4.1).

2. The process analysis workflow layer stores information about the tasks
that must be executed to inspect the specific process problem of a PKA.
We introduce a process analysis meta-model that captures analytic
knowledge for a wide range of different process problems (see Sec-
tion 3.4.2).

Different from SQL scripts or ETL pipelines, PKAs are much more flexible
and adjustable because they only investigate a particular process problem.
We abstract the raw data transformation from the analysis, which enables the
analysis of different PAISs executing the same process without changing the
process analysis tasks. Furthermore, PKAs are stored in a central repository,
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which is a glossary of process analysis knowledge and maintains process
analysis tasks for future applications.

In the following, we describe the two abstraction layers in detail.

3.4.1 Data Collection and Consolidation Layer

The first layer deals with the collection and consolidation of data stored in
PAISs. Similar to the OpenSLEX approach, a PKA defines a mapping between
the raw data structure of the analyzed information system and the event log
structure in process mining.

3.4.1.1 Data Sources and Business Object

We introduce the concept of business objects to better reflect what is stored in
PAISs. Typically, a process consists of different objects, e. g., purchase orders,
invoices, or production items, that are inspected, which we will call business
objects. Each business object can produce events, e. g., a purchase order can
be created and approved, and have different attributes, e. g., a purchase order
has a value. Process mining does not have such a perspective on the process
and operates on a flat data structure, consisting of cases and events.

We propose a simplified data source structure, derived from OpenSLEX
[MRA18], that consists of tables, fields, and relationships to describe the data
transformation meta-model. In the rest of this section, we assume that the
data is stored in tabular form, e. g., in a relational database.

Definition 3.1 (Data Source). Let the data source be a tuple DS = (T, F, tblFld,
val, REL) such that:

• T is a set of table names,

• F is a set of field names,

• tblFld ∈ T → P(F) is a function that maps a table name to a set of field
names,

• val ∈ F → P(V) is a function that maps field names to a set of values,

• REL ∈ P(F) → P(F) is a function that maps a set of field names to
another set of field names, describing the relationships between tables.

A data source can have multiple business objects which store information
about the occurring events and attributes, characterizing the object. A business
object is defined as follows:

Definition 3.2 (Business Object). A business object is a tuple BO = (CId, EV,
AT, TB) such that
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• CId ⊆ F is a set of field names that correspond to the case identifier,

• EV is a set of event objects,

• AT ⊆ F is a set of field names that correspond to the case attributes,

• TB ⊆ REL is a set of relations among tables.

Each business object can have multiple case identifiers, multiple definitions of
event objects, and case attributes. Events of a corresponding business object
are defined in a separate data structure:

Definition 3.3 (Event Object). Let TS be the set of all timestamps. An event
object is a tuple E = (TSFld, timestamp, R, EA, RS, CD) such that

• TSFld ⊆ F is a set of field names that refers to the timestamp of the
event,

• timestamp ∈ TSFld → TS is a function that maps a set of timestamp
fields to a timestamp,

• R ∈ F is a set of field names that refer to the resources of the event,

• EA ⊆ F is a set of field names that refer to additional event attributes
of the event,

• RS ⊆ REL is a set of relations among tables,

• CD ∈ P(F)→ {true, f alse} is a condition function that returns true if
the values of the given fields fulfill the condition, otherwise false.

The above-introduced meta-model allows analysts to define events and at-
tributes for specific business objects. For generating event logs, the framework
automatically evaluates the business objects by generating corresponding
SQL statements that transform the data from PAISs to flat event logs. Two
data tables are generated for each business object, the case attribute table,
and the events table. Example 3.1 illustrates the definition of business objects
as well as the final results for a procurement handling process.

Example 3.1

We consider a procurement handling process in SAP. Purchase orders
are stored in the tables EKKO (purchase order head), EKPO (purchase
order positions), and EKBE (purchase order history). EKKO stores the
main information of a purchase order, EKPO stores the individual
positions of the purchase order, and EKBE stores any changes to the
purchase order such as goods receipt. The tables are linked by the
purchase order number EBELN and the position number EBELP.
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EBELN ERNAM

..12926 MUSTERMANN

..12966 MUSTERMANN

Table 3.2: Excerpt of the EKKO table of SAP MM.

EBELN EBELP AEDAT TXZ01 NETWR WERKS

..12926 00010 2019-04-29 13:39 Monitor 149,99 IT

..12926 00020 2019-04-29 13:39 Keyboard 39,95 IT

..12966 00010 2019-04-29 13:40 Printer paper 4,99 OFFICE

Table 3.3: Excerpt of the EKPO table of SAP MM.

EBELN EBELP CPUDT CPUTM ERNAM VGABE SHKZG

..12926 00010 2019-04-30 15:43 MUSTER.. 1 S

Table 3.4: Excerpt of the EKBE table of SAP MM.

In this example, the purchase order is considered as the object of
interest. We specify the business object Purchase Order and consider two
events Purchase order created and Goods receipt which are extracted from
the three tables (see Table 3.2 - Table 3.4).

The following events are specified:

1. EPO_Created = (TSFld, timestamp, R, EA, RS, CD) with

• TSFld = {EKPOAEDAT}

• timestamp = id

• R = {EKPOERNAM}

• EA = {}

• RS = {}

• CD = true

and id being the identity function.

2. EGoods_receipt = (TSFld, timestamp, R, EA, RS, CD) with

• TSFld = {EKBECPUDT, EKBECPUTM}

• timestamp = dat_ f ormat
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• R = {EKBEERNAM}

• EA = {}

• RS = {EKPO↔ EKBE}

• CD =


true, if val(EKBEVGABE) = 1

∧ val(EKBESHKZG) = ’S’

f alse otherwise

and dat_ f ormat being the function that concatenates date and
time to a timestamp.

The business object Purchase Order is then defined as BOPurchaseOrder =

(CId, EV, AT, TB) with

• CId = {EKPOEBELN , EKPOEBELP}

• EV = {EPO_Created, EGoods_receipt}

• AT = {EKPOTXZ01, EKPONETWR, EKPOWERKS}

• TB = {EKPO↔ EKKO}

For the case identifier, the purchase order number and the position
of the item are concatenated. Both events are attached to the business
object, and additional case attributes (purchase item text, price of the
purchased goods, and the plant) are added. Lastly, the business object
also stores the relationships between the tables which are defined in
the original data source.

As a result, the following two flat tables are generated:

CaseId Event Timestamp Resource

..12926 00010 PO_Created 2019-04-29 13:39 MUSTERMANN

..12926 00020 PO_Created 2019-04-29 13:39 MUSTERMANN

..12966 00010 PO_Created 2019-04-29 13:40 MUSTERMANN

..12926 00010 Goods_receipt 2019-04-30 15:43 MUSTERMANN

Table 3.5: Resulting event log table of the Purchase Order business object.

CaseId TXZ01 NETWR WERKS

..12926 00010 Monitor 149.99 IT

..12926 00020 Keyboard 39.95 IT

..12966 00010 Printer paper 4.99 OFFICE

Table 3.6: Resulting case attribute table of the Purchase Order business object.
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3.4.1.2 Issues with Multiple Objects

We mentioned earlier that process mining does not consider multiple objects
within a case, which leads to two issues:

1. If multiple objects refer to a single case, the resulting log contains a
repetition of events because it is not possible to distinguish between
the events. This repetition leads to self-loops in the process model (e. g.,
if multiple invoices correspond to a single purchase order, all invoice
events occur multiple times).

2. If multiple cases refer to a single object, all events of this object are
duplicated for each case (e. g., if multiple orders are paid with one pay-
ment, the payment transaction is multiplied by the number of orders).

Our framework tries to overcome these issues by extracting events for each
business object individually before combining multiple objects. Events of
each business object are stored in a separate data table. Business objects are
linked together via a lookup table, storing the unique identifiers of business
objects that belong together within a case. In essence, the case lookup table
contains a row for each link and a column for each business object.

Example 3.2

Let us assume we investigate a process with two business objects: a
purchase order and an invoice. If a single purchase order is linked
to two invoices, the lookup table contains two entries. The first entry
consists of the identifier of the purchase order and the identifier of the
first invoice. The second entry consists of the identifier of the purchase
order and the identifier of the second invoice.

Depending on the perspective needed, the analyst decides how cases are
built together. For example 3.2 two different perspectives can be chosen.
First, purchase orders and invoices should be merged, which means only a
single case is generated, leading to a loop in the reconstructed process model
because the invoice event is triggered twice. Second, purchase orders and
invoices should be kept separate, that means two cases are generated, leading
to a duplication of the purchase order. Figure 3.1 shows the dependencies
between the business object and the result tables.

3.4.2 Process Analysis Workflow Layer

The second layer deals with the actual analysis of the event log. We distinguish
between two types of analysis:

• Targeted analysis focuses on the identification of well-known process
problems using predefined criteria. The main objective is to check a set
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Figure 3.1: Schematic structure of the generation of an event log from raw data
sources using business objects.

of process problems that occur typically in this specific type of process
(see Section 3.4.2.1).

• Exploratory analysis focuses on the detection of unknown behavior
and characteristics of the process that the analyst is not aware of. The
main objective is to find interesting patterns in an unsupervised or
exploratory fashion (see Section 3.4.2.2).

Both types of analysis tasks are supported by the process knowledge artifact
framework. The following subsections describe the details of both analysis
types.

3.4.2.1 Targeted Analysis

The goal of the targeted analysis is to identify well-known and frequently
occurring process problems. This type of analysis often refers to the man-
ual analysis work of consultants using process mining tools. Because such
process problems have been observed in many organizations, they are well
understood and can be identified by following a predefined set of tasks. In
other words, the analyst already knows what he needs to analyze [Cas+04].

From the report analysis of the BPIC (see Section 3.3) we designed a meta-
model for commonly used process mining analysis tasks based on popularity.
This meta-model is used in a PKA to define the tasks required to investigate a
particular process problem. Similar to the manual workflow of analysts, tasks
in a PKA are organized as configurable pipelines with an arbitrary number
of tasks that are executed one after another. Each task produces an output
which is stored in a result container, allowing the use in subsequent tasks to
construct complex analysis tasks.

We divide the process analysis workflow tasks into two classes:
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Perspective Analysis Task Function

All Filtering Filter
Aggregation Aggregation
Group by GroupBy

Organizational Resource cardinality OC.Resource
Binding of duty OC.BindDuty
Segregation of duty OC.SegregationOfDuty
Resource attribute rules OC.Expression

Control flow Process model CC.Discovery
Order of activities CC.DirectlyFollows

CC.EventuallyFollows
Start and end activities CC.BeginsWith

CC.EndsWith
Data-driven activity precondition CC.Expression

Time Activity duration TC.EventDuration
Case duration TC.ProcessDuration

Functional Activity coexistence FC.Coexist
Activity occurrence FC.Occurrence
Data-driven activity existence FC.DataExists

Data Attribute evaluation DC.Expression

Table 3.7: Targeted analysis tasks that can be used in a PKA.

filtering , aggregation, and group-by tasks The first class of tasks
refers to the filtering of cases, aggregation of entities, and grouping cases
according to an expression. According to our report analysis, we found
that these tasks were performed across the five process perspectives.

business rule tasks The second class of tasks refers to the validation of
certain business rules, e. g., activities are executed in the desired order,
or the duration time between activities is within a certain range. The
business rule tasks performed in the reports are also widely discussed
in related work [San+96; CVB13; GHV08; MBA13; DMA12; Man+15],
which we use to systematize the tasks being supported by our frame-
work.

Table 3.7 shows the analysis tasks supported by the process knowledge
artifact framework.

Example 3.3 illustrates the definition of a PKA.
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Example 3.3

This example demonstrates the definition of a PKA which examines
long duration times between the activities PO_created and Goods_receipt
of a procurement handling process. In particular, we are interested in
cases for which the duration between the two activities takes longer
than 30 days. Both events correspond to the Purchase order business
object which is defined in the previous example 3.1. The PKA stores a
link to the corresponding business object such that the required data
source is known to the PKA.

The actual computation of the duration time between the two activities
is performed by two workflows. The first workflow discovers a process
model by applying a process discovery algorithm. The second workflow
of the PKA computes the actual duration time between the events
and compares them with the threshold of ≥ 30 days. One could also
investigate the duration time of cases that differ from the mean value,
i. e., finding outlier cases. Affected cases are returned in the affected
result container variable which is used for further inspection and root
cause analysis.

Table 3.8 shows the entire definition of the described PKA.

Property Component / Configuration Result

References BO-PurchaseOrder

Pipeline[0] CC.Discovery pm.model

perspective: ’Control-flow’

Pipeline[1] TC.EventDuration dur.order
input: pm.model
start event: ’PO_created’
end event: ’Goods_receipt’
Filter affected
expression: ’dur.order ≥ 30 days’

Affected Cases affected

Table 3.8: Simplified example PKA investigating in cases with duration times
between PO_created and Goods_receipt longer than 30 days.

3.4.2.2 Exploratory Analysis

The second type of analysis in process mining is the exploratory analysis,
which deals with the problem that it is unrealistic to define all relevant
process problems. The goal of the exploratory analysis is to find potential
process problems that are not covered by the targeted analysis.
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In this thesis, we introduce two exploratory analysis algorithms which are
discussed in separate chapters:

• In Chapter 5, a process drift detection algorithm is introduced. It deals
with the problem that the execution of a process may change over
time. Often new regulations, guidelines, or organizational changes
indirectly influence the process execution without being recognized
or documented. The algorithm investigates changes to the discovered
process models to identify such behavioral changes.

• Chapter 6 introduces a multi-perspective trace clustering algorithm that
combines control flow and data perspective to find cases with similar
process behavior. Different from process drift detection, which analyzes
process behavior over time, trace clustering aims to find these different
behaviors independent from time.

Besides these two algorithms, we introduce ProcessExplorer (see Chap-
ter 7), an intelligent and interactive visual recommendation system to en-
able fast data analysis and exploration of large and complex event logs.
ProcessExplorer extends existing process mining tools by introducing a
recommendation engine that guides analysts towards automatically obtained
findings in event logs. Particularly, it suggests interesting subsets of cases
and computes insightful insights that analysts are typically interested in.

3.5 Case Study

This section presents the results of a case study in which the process knowl-
edge artifact framework was used to analyze business processes of different
organizations. The main evaluation aspects of the case study are threefold:

1. We investigate the reduction of manual work of analysts using PKAs to
partially automate their work (see Section 3.5.2).

2. We investigate how PKAs can be reused across different process min-
ing projects, i. e., analyzing PAISs of different organizations (see Sec-
tion 3.5.3).

3. We investigate how our framework compares to the state of the art
process mining tools (see Section 3.5.4).

The case study was performed in cooperation with a consulting company
that uses process mining to analyze business processes in organizations. The
process knowledge artifact framework was used in five different process
mining projects (see Table 3.9) to investigate the procurement handling
process of SAP systems.
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Dataset Industry Timespan Variants Instances

A Public Transportation 27 Month ∼37 320 ∼568 000

B Public Media 12 Month ∼8 600 ∼29 000

C Business Consulting 15 Month ∼850 ∼12 000

D Technology 36 Month ∼11 800 ∼225 000

E Production 36 Month ∼4 750 ∼82 000

Table 3.9: Overview of the process mining projects which were used to evaluate the
process knowledge artifact framework.

21 3556

3 117

0.3
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0.3
Process Knowledge Artifact

Conventional Process Mining

Interview-based Consulting

0 25 50 75 100 125

Days

Task Analysis Evaluation Preparation

Figure 3.2: Overview of time spent in process mining projects comparing the process
knowledge artifact framework and conventional process mining tools.
Interview-based consulting results were obtained from former experience
of the consulting company.

3.5.1 Experiment Setup

The consultants received a short introduction into the framework, explaining
the rough idea of process knowledge artifacts and showing them how PKAs

are created and maintained. Together with the consulting team, five different
process mining projects were selected in which the framework was used,
parallel to the regular analysis with conventional process mining tools. We
choose a within-subject design study due to the small number of consultants
participating in our study. We measured the time analysts spend to analyze
the data with time-sheets for each project. The time required was divided into
data preparation, analysis, and evaluation of the results. The result is depicted
in Figure 3.2.

3.5.2 Reduction in Manual Work

In this section, we present the results of a user study, evaluating the reduction
of manual work of analysts during the analysis of event logs.
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In our study, the average total project time with conventional process mining
tools was between 3 and 4 weeks. Out of this period, an average of 3 days
was spent to transform the raw data into an event log, including the selection
of the required data sources, the collection and extraction of the data, and
the preparation of an event log. Due to the different scope of the projects,
the time required to answer the business questions about the process varied.
On average 11 days were spent using a process mining tool to manually
investigate the process, find process issues, and answer the desired questions.
According to the analysts, most of the time was spent understanding the
process, the case attributes, and the terminology. The evaluation and prepa-
ration of the results for the customer took an average of 7 additional days to
complete the project.

The same projects were performed increasingly faster with each project using
the process knowledge artifact framework. During the first projects, most of
the time was spent getting familiar with the framework and modeling the
required analysis knowledge (see Section 3.5.3). However, the subsequent
projects benefit from the knowledge modeled in PKAs. Instead of performing
the same set of tasks again, analysts reused knowledge stored as PKAs and
simply executed them to obtain the desired result. For example, analysts
build a set of PKAs dealing with compliance issues, e. g., segregation of duty
or service level agreements. Nevertheless, analysts could modify and adjust
PKAs, i. e., events, case attributes, and pipelines, to reflect the differences
between projects. As a result, the last of the five projects was completed in 2
days, including data preparation, analysis, and result evaluation.

Although the comparison showed a significant improvement of the frame-
work over conventional tools, the differences in the projects make it difficult
to report exact numbers. The results of the case study revealed that modeling
process analytic knowledge into a meta-model, i. e., our PKA structure, can
make analysis workflows more efficient. Typical process problems can be
evaluated with less manual work. In this study, we did neither investigate the
quality of the analysis results nor did we compare the results of our approach
with conventional process mining tools. This would have been useful to see if
the manual analysis is comparable to the results derived with our framework.

It should be noted that the focus of this study was the targeted analysis with
PKAs. We also conducted a separate user study that investigated exploratory
process analysis and our recommendation engine to guide analysts towards
interesting findings automatically (see Chapter 7).

3.5.3 Knowledge Modeling

This section investigates the knowledge modeling using PKAs. The case
study revealed that defining specific process analysis tasks is an unfamiliar
task for analysts, rather than visually inspecting the event log. Although the
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actual questions and analysis tasks were known, analysts had difficulties
defining analysis tasks in the form of workflows without immediately seeing
the results visually. Consequently, analysis tasks were defined in an iterative
manner, which led to a trail-and-error approach until the desired outcome
was achieved. Analysts spend a lot of time searching for the correct data
attributes, activities, and operators because input support was limited. We
also found that analysts had to switch back and forth between the editor and
the results page of the analysis because they repeatedly executed the analysis
to validate their input. As a result, the analysis found the methodology
confusing because visual feedback of workflows was not given during the
design phase. Unlike conventional process mining tools, where modeling of
analysis tasks is basically performed in an exploratory fashion during the
analysis itself, our framework forced analysts to model their tasks in advance.

Besides the difficulties analysts had, we also observed that the analysts be-
came more and more familiar with our framework and created an increasing
number of PKAs after they experienced the reduction of manual tasks. In
particular, analysts spent about 10 days modeling and designing PKAs for
the procurement handling process across all projects. In total, 104 PKAs were
designed with 48 evaluating simple data expressions (e. g., aggregating prices,
calculating costs), 38 calculating PPIs (e. g., total discount lost, service level
agreements), 10 investigating the order of activities (e. g., checking simple
business rules such as maverick buying), and 8 calculating the throughput
time between activities.

The results of the case study revealed that analysts designed a wide range of
different PKAs investigating different process problems. Analysts positively
commented that almost all their required tasks were supported by our frame-
work and that the generated PKAs could be easily reused in subsequent
projects. However, visual exploration of event logs is still an essential task in
process mining. The lack of instant result presentation was a major concern of
all analysts which makes it unnecessarily complicated and time-consuming
to model analytic knowledge.

3.5.4 Comparison with the State of the Art

In this section, we compare the capabilities of the process knowledge artifact
framework with conventional process mining tools. It should be noted that
the comparison is not exhaustive and only gives an rough overview of the
capabilities. We compare our framework with ProM, RapidProM, Fluxicon
Disco, QPR ProcessAnalyzer, and Celonis Intelligent Business Cloud (IBC).
Table 3.10 shows an overview of the tools and capabilities compared.
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(1) Data Collection & Consolidation  G#  #   

(2) Process Discovery       

(3) Process Analysis Workflow  #  #  G#

(4) Result Evaluation  # # # # G#

(5) Knowledge Repository  # G# # # G#

Table 3.10: Overview of the different process mining tools compared with the process
knowledge artifact framework.  indicates the presence, G# indicates a
partial presence, and # indicates the non-presence of a capability.

3.5.4.1 Data Collection & Consolidation

Before applying process mining techniques, data collection and consoli-
dation is needed to obtain a suitable event log. These tasks are typically
not integrated into conventional process mining tools although being simi-
larly important. Only RapidProM, QPR ProcessAnalyzer, and Celonis allow
transforming raw data into event logs. RapidProM allows analysts to define
workflows to extract, transform, and validate data sources and prepares
them for process mining. An SQL-based approach is provided by QPR Pro-
cessAnalyzer which allows the design of custom scripts and the import of
preprocessed event logs. Celonis offers a graphical interface to define the
event collection from databases, flat files, and other PAISs. All other tools
rely on the existence of an already prepared event log, either stored as a
CSV or XES file. Our framework integrates data collection and consolidation
as a core component because identifying different process problems may
need different data sources. For better orchestration of the data sources, our
approach links raw data sources to the process problems, i. e., each PKA
stores which data it needs for inspection.

3.5.4.2 Process Discovery

Process discovery is supported by all process mining tools, either producing a
process map (e. g., ProM, RapidProM, QPR ProcessAnalyzer, Celonis, and our
framework) or generate process models with AND and OR-gate semantics
(e. g., ProM, RapidProM, and Fluxicon Disco).
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3.5.4.3 Process Analysis Workflow

Since almost all conventional process mining tools focus on interactive visual
exploration, most of the tools do not provide many capabilities for automating
analysis workflows. RapidProM is the only tool that also allows designing
workflow pipelines to automate certain process analysis tasks. Different
from our framework, the workflow pipelines designed in RapidProM are not
easily adaptable. Modifying interconnected tasks immediately leads to an
inconsistent and infeasible pipeline. QPR ProcessAnalyzer allows analysts to
write SQL scripts with process mining capabilities and custom extensions.
Similar to RapidProM, maintaining ad-hoc SQL queries is error-prone and
complicated. Celonis recently introduced operational applications that in
essence contain a workflow to analyze certain tasks automatically. However,
there is not much information about which tasks can be automated and
how flexible these applications are. Our framework provides process mining
specific tasks that can be easily combined within a workflow. Each PKA
consists only of tasks specifically required to investigate a particular process
problem, facilitating reuse and customization.

3.5.4.4 Knowledge Repository

The key idea of our framework is the knowledge repository in the form
of PKAs. They store knowledge about typical process problems and how
they can be investigated. In most process mining tools, knowledge about
the analysis cannot be easily consolidated and reused in subsequent process
mining projects.

Celonis and RapidProM are the only two investigated conventional process
mining tools that allow to store and reuse process analysis knowledge. In
Celonis analysts can design a dashboard, consisting of interactive charts and
PPIs that are automatically updated for different event logs. However, dash-
boards do not necessarily provide immediate evaluation results to process
problems. RapidProM allows storing analysis workflow pipelines which can
be executed on different event logs. Still, maintaining and modifying such
analysis workflow pipelines is complicated because tasks strongly depend on
each other, such that modifications may break the entire pipeline.

3.6 Discussion and Limitations

The process knowledge artifact framework provides several building blocks
for targeted and exploratory analysis. However, there are some limitations
and research directions for future work.
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3.6.1 Meta-Model

The proposed meta-model for data extraction assumes the existence of an
exhaustive data model. In particular, the relationships among data fields and
tables must be known. In certain situations this information is not available,
leading to manual exploration and identification of the underlying data
structure. Our method does not yet provide automatic detection of such
relationships.

3.6.2 Targeted Analysis

The proposed PKA allows analysts to design analysis pipelines to automate
the computation of targeted analysis tasks. This concept assumes a well-
understood process for which specific tasks can be easily defined. However,
in some process mining projects, the overall analysis goal is unknown and it
is the goal of the project to find interesting patterns. Targeted analysis cannot
help in these situations and analysts must rely on exploratory analysis.

The conducted case study revealed that defining targeted analysis workflows
without direct visual feedback is complicated in certain situations. During
the design phase of PKAs, it is necessary to provide some visual feedback
for the analyst to validate the correctness of their designed workflow.

3.6.3 Case Study

An extended case study could deliver more in-depth insights into the pro-
posed methodology and framework. Certain design aspects of the process
knowledge framework, such as the user interface or the runtime performance,
were not considered in the case study. In particular, useful capabilities of
other process mining tools, i. e., dashboards, operational applications, ex-
ploratory analysis, were also not considered. It might also be interesting to
investigate the analysis workflows that are followed by analysts to obtain
more insights about how process issues are analyzed. Further research is
also needed to compare the outcome of predefined with exploratory analysis,
which was not investigated in our case study.

3.7 Conclusion

In this chapter, we introduced the process knowledge artifact framework
which proposed meta-models to conduct and automate workflows for anal-
ysis tasks in process mining. In summary, the main contributions of this
chapter are:
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Figure 3.3: Overview of the chapter and contributions.

1. A meta-model for automatic collection and consolidation of event logs
from heterogeneous data sources in a generic reusable way.

2. A process analysis framework that allows the capturing of process
analytic knowledge in PKAs. Typical process problems can be modeled
and easily investigated for different event logs.

3. Results from a case study of five different process mining projects
that strongly support the claimed advancements made by the process
knowledge artifact framework.

The process knowledge artifact framework builds the basis (see Figure 3.3) for
collecting and consolidating heterogeneous data from PAISs. The presented
meta-model bridges the gap between data stored in PAISs and event logs
required for process mining. The framework orchestrates the tasks being exe-
cuted by analysts for targeted analysis to investigate typical process problems
and supports exploratory analysis. In the following chapters, algorithms and
methods are presented to obtain insights regarding process compliance and
process behavior from event logs.
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4
Business Rule Evaluation using TFA

The previous chapter introduced the foundational framework for process
analysis and divided analysis tasks into targeted and exploratory ones.
Targeted analysis tasks evaluate either specific business rules or Process
Performance Indicators (PPIs). This chapter introduces a targeted analysis
algorithm for identifying process compliance violations in large event logs. In
particular, we adapt concepts of taint flow analysis to validate specific control
flow constraints in business processes. Taint flow analysis originates from the
software engineering research community, where it is used to find vulnera-
bilities in software programs by constructing a graph reachability problem. It
was shown that this problem can be computed very efficiently [RHS95].

This chapter is organized as follows. First, Section 4.1 gives a short introduc-
tion into compliance checking for processes. Next, related work in the context
of backward compliance checking is discussed (Section 4.2). In Section 4.3 a
compliance checking algorithm based on graph-reachability is introduced.
Then, Section 4.4 compares the contributed algorithm with other related work
in an experimental evaluation. The chapter concludes with the limitations of
the presented work, and potential future work (Section 4.5).

Publication: This chapter is based on the following publication:

Alexander Seeliger, Timo Nolle, Benedikt Schmidt, and Max Mühlhäuser.
“Process Compliance Checking using Taint Flow Analysis.” In: Proceed-
ings of the 37th International Conference on Information Systems - ICIS ’16.
2016.

Contribution Statement: I led the idea generation, implemented the
prototype and performed the data evaluation. Timo Nolle, Benedikt
Schmidt and Max Mühlhäuser supported the conceptual design and
contributed to the writing process.

4.1 Introduction and Motivation

Process compliance checking is an essential task for organizations to reveal
risks that could have a negative impact on the organization’s regulatory
compliance and profitability [CVB13]. Consequently, organizations are in-

69
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terested identifying potential process issues quickly to comply with regula-
tions, policies, and guidelines. On the one hand, several external authorities
force organizations to be compliant with certain business rules such as the
General Data Protection Regulation (GDPR) [Tan16] or the Sarbanes-Oxley
Act [SO02]. Violations against such regulations may cause legal proceedings
and unexpected costs. On the other hand, organization’s shareholders and
other stakeholders demand frequent and independent assessments to prevent
non-compliant activities. Process compliance checking helps organizations to
identify violations and to implement measures to reduce risks early.

Compliance checking is commonly divided into two categories [RFA12; FZ14]:

• Forward compliance checking prevents compliance violations by ver-
ifying process models at design time and implementing mechanisms
to monitor compliance at runtime. Typically, the financial sector uses
forward compliance checking to enforce regulations strictly [Bec+14]. In
other industrial sectors that might not be necessary and would decrease
the flexibility of processes, reducing the ability to quickly respond to
external influences, such as seasonal demand changes.

• Backward compliance checking investigates recorded event logs from
Process-aware Information Systems (PAISs) to detect and locate non-
compliant process behavior. Unlike forward compliance checking which
is applied at design and runtime, backward compliance checking is
applied after the process has been executed, e. g., in the context of
audits [Aal+10; WGN13].

In the following, we focus on backward compliance checking.

Process mining allows analysts to obtain a more in-depth view on the com-
pliance of processes in PAISs by analyzing recorded information about the
actual process execution. A major challenge is to compare the prescribed
process behavior, i. e., a process model or a set of compliance rules, with
the observed behavior in an event log to detect and locate non-compliant
behavior. For example, a wide range of conformance checking approaches
has been proposed to check conformance given a process model (e. g., Petri
nets, Workflow nets, or BPMN) and an event log [CW99; GCC09; MC10;
Knu+10; Wei+11; DMA12; AAD12; IEE11; MCA13; Sch15; Man+15]. These
approaches replay the event log on the process model [Aal11; AAD12] or
compute trace alignments [RFA12; Man+15] to detect and locate conformance
issues. Another approach is to define a set of compliance rules, e. g., in the
form of Linear Temporal Logic (LTL) expressions [ABD05], and compare
them to an event log.

Existing backward compliance checking approaches have several issues. First,
describing compliant process behavior as a process model or formulating
expressions in temporal logic can be difficult and is not well supported in
existing approaches [RFA12]. Often up-to-date and usable process models
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are not available [FZ14; Has+18] and dealing with complex temporal logic
constructs can be difficult for end users. Second, the high computational
complexity of compliance checking approaches, even with a small set of
rules, might make the application unfeasible [Has+18; DMA12]. However, the
growing availability of event data from PAISs and the increasing complexity
of processes require new approaches to overcome these challenges. Lastly,
most compliance checking approaches do not provide useful insights into
the detected violations, such as provided by forward compliance checking
methods.

This chapter introduces a backward compliance checking algorithm that
transforms the problem of business process compliance checking into a
graph-reachability problem to address the above issues. The work in this
chapter is based on the taint flow analysis used in software engineering,
e. g., to detect security vulnerabilities in the program code of interactive
websites [Gua+11], Android apps [Arz+13], etc. The fundamental idea of
taint flow analysis is that any program variable in software that can be
modified by an outside attacker (e. g., a variable set by an input field on a
website) leads to a potential security vulnerability. If that value of the variable
is used in an expression to set another variable, this other variable may
also pose a risk. Variables that contain potential risks and are not sanitized
before a sensitive command is executed are marked as a potential security
vulnerability. The taint flow analysis constructs a directed graph of program
variables to identify variables with a potential security risk.

Similar to the flow of variable values in program code, traces in an event
log can be converted into a process map, containing nodes and edges like a
regular directed graph (see Section 2.4.1). This process map is the input for the
taint flow analysis algorithm, which searches for realizable paths that violate
a set of predefined rules. The basic idea is to introduce conformance-establishing
activities that mark a realizable path in the process map as compliant, i. e.,
these activities act like sanitizers. A realizable path consists of sensitive
producer activities, e. g., a purchase order, and a sensitive consumer activity,
e. g., a payment of an invoice. Whenever such a realizable path exists in the
process map that does not contain a conformance-establishing activity, this
path is not compliant. Reps et al. [RHS95] have shown that the computation of
such realizable paths in graphs can be solved efficiently using the tabulation
algorithm. Our approach focuses on two control flow compliance checks: the
existence of activities and the order of activities. Additionally, the algorithm
provides detailed diagnostics about the violation, not usually given by related
approaches. It highlights the violating path in the process map and returns a
counterexample that violated the prescribed business rule.
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4.2 Related Work

This section introduces related work in the context of backward compli-
ance checking. There are two fundamentally different approaches to back-
ward compliance checking: (1) approaches using process models, and (2)
approaches using rules as a description language.

We compare the related work based on a set of relevant requirements for
designing backward compliance checking algorithms:

(R1) Use of a comprehensive modeling language
The modeling language for specifying the compliance checks should be
easy to use and comprehensive for analysts [RFA12].

(R2) Provision of visual explanations
The algorithm should provide visual explanations that describe a de-
tected violation [DMA12; RFA12]. This allows the analyst to visually
perceive the violation in the corresponding process model.

(R3) Support for partial process descriptions
Often, in real-life scenarios, the full description of a process is not
available, i. e., the behavior of all process participants is not known or
cannot be controlled [Mag+11]. Therefore, the algorithm should not
assume that analysts can provide the entire process description.

(R4) Support for large event logs
Real-life event logs tend to become very huge with a large number of
cases. The compliance checking algorithm should be able to handle
large real-life event logs [Don+17].

(R5) Provision of proven correctness
The validity of the underlying algorithm for compliance checking
should be proven to identify compliance violations correctly.

Table 4.1 compares the relevant research in each group regarding the estab-
lished requirements. The following sub-sections elaborate on the related work
in detail.

4.2.1 Process Model-based Compliance Checking

An extensive research area in the field of process mining is conformance
checking which compares predefined process models, e. g., Petri nets, Event-
driven Process Chains (EPCs), Workflow nets, or BPMN, with event logs
obtained from PAISs [CW99; FZ14; Has+18]. These process models often
need to be manually crafted from textual documentation or are obtained from
reference models [GCC09]. Due to the different granularity of the activities
in the process model and in the event log (e.g., different activity names or
technical events) an activity matching is needed. In this case, algorithms that
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Process Model-based Compliance Checking
Cook and Wolf [CW99]  # #  #

Gerke et al. [GCC09]  # G#   

Muñoz-Gama and Carmona [MC10]  G# #  G#

Knuplesch et al. [Knu+10]   # #  

Weidlich et al. [Wei+11]     G#

de Leoni et al. [DMA12] G#   #  

van der Aalst et al. [AAD12]  # # # G#

van der Aalst et al. [IEE11]   # #  

Muñoz-Gama et al. [MCA13]  # #   

Schönig [Sch15]  #   G#

Mannhardt et al. [Man+15]   # #  

van Dongen et al. [Don+17]   # G# G#

Rule-based Compliance Checking
van der Aalst et al. [ABD05] # #  #  

Award et al. [ADW08]  #  #  

Award et al. [AW09]    #  

Governatori and Rotolo [GR08]  # # #  

Ly et al. [LRD10]  #  #  

Maggi et al. [Mag+11]    G#  

Ramezani et al. [RFA12]    #  

Table 4.1: Property comparison of process compliance checking algorithms.  indi-
cates the fulfillment, G# indicates a partial fulfillment and # indicates the
non-fulfillment of a requirement.
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match the activity names of the model with the event log [BMW14; Bai+17]
or abstract low-level events [Man+16] are applied.

A common method to compare event logs with process models is to replay the
recorded traces on the prescribed process model [Aal11; AAD12; Man+15].
The degree of deviation is quantified with the fitness measure [AAD12], indi-
cating how many of the observed traces can be successfully replayed by the
process model. Other metrics such as precision are also used to determine the
deviation between a given event log and a process model [MC10]. In [Wei+11]
different compliance metrics based on behavioral characteristics are intro-
duced. Other methods check conformance on different perspectives [Knu+10;
Man+15].

Trace alignment, inspired by biological sequence alignment, is another ap-
proach for obtaining deviations between a predefined process model and an
event log [JA12; Man+15; Don+17]. Although trace alignment has become
the state of the art for conformance checking in process mining [RFA12], it is
not trivial to compute alignments for large event logs [Don+17]. In [MCA13],
the authors propose a decomposition approach that divides a large pro-
cess model into its sub-processes to speed up the computation. Another
approach [Don+17] deals with this issue by balancing between alignment
quality, i. e., an optimal solution, and efficiency.

For processes that are not particularly structured, declarative process models
are used for compliance checking. DECLARE [PSA07] is a declarative process
modeling language that allows specifying compliance rules. Event logs are
verified against DECLARE models by computing trace alignments [DMA12].
In [Sch15], a database-based method using SQL expressions is introduced.
The authors propose specific SQL queries for detecting compliance violations
such as control flow constraints, resource assignment constraints, or cross-
perspective constraints.

Process model-based compliance checking can be easily applied in situa-
tions where a prescribed process model is available because no new process
modeling language is needed. However, due to the increased flexibility of
processes, process models are often not maintained anymore because it is
not feasible to update models continuously. In addition to the necessity of
a comprehensive or partial process model, it is computationally complex to
obtain deviations between a process model and an event log.

4.2.2 Rule-based Compliance Checking

A different research direction is rule-based backward compliance check-
ing [CVB13]. Instead of comparing process models with event logs, a set
of business compliance rules is specified and validated. In organizations,
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the definition of business rules is typically more approachable than the
specification of the exact process behavior in form of a model.

LTL expressions allow specifying a wide range of different and complex
compliance rules [ABD05]. The specification of business rules in LTL is quite
difficult for non-experts. For this reason, a simplified formal definition of
LTL was introduced in [ADW08]. This approach was further simplified by
introducing a visual query language, called BPMN-Q [AW09]. Analysts can
specify rules that check the presence, absence, and order of activities. These
rules are then automatically transformed into regular LTL expressions. A
compliance framework based on LTL and colored automata is introduced by
Maggi et al. [Mag+11].

In addition to LTL expressions, other domain-specific languages for com-
pliance checking are proposed. In [GR08], a formal contract language is
introduced that allows expressing normative specifications of a process. With
SeaFlows [LRD10], process independent compliance rules can be defined in
a graph representation. These independent rules are then verified by map-
ping them to the actual process. A collection of 55 Petri net compliance
rule patterns is proposed in [RFA12]. The approach maps the compliance
rule patterns to the inspected process and uses trace alignment for temporal
pattern verification.

In contrast to process model-based methods, in which comprehensive or
partial process models must be created to describe the prescribed process
behavior, rule-based methods can explicitly check for prohibited behavior
or validate given requirements. Creating and maintaining business rules
is usually easier. Similar to process model-based approaches, validating
business rules is a highly complex task that may take a long time to compute
for large event logs.

4.3 Compliance Checking as a Reachability Problem

In this section, we introduce a backward compliance checking algorithm that
transforms the problem into a graph-reachability problem. The algorithm
searches for non-compliant paths in the process map, instead of comparing
the event log with the desired process model or using a model checker for
evaluating LTL expressions. The algorithm consists of three parts:

1. An exploded supergraph is constructed to validate the set of compli-
ance rules (Section 4.3.2). The exploded supergraph maintains all non-
compliant paths that correspond to each compliance rule defined.

2. A tabulation algorithm (Section 4.3.3) computes the reachability of nodes
in the exploded supergraph.
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1. Event Log to Process Map

2. Taint Flow Analysis

3. Replay of Traces

Process map

Exploded supergraph
Rules

Tabulation

Algorithm

Process Map

Converter

Replayer

Compliance Result

Event Log

Figure 4.1: Overview of the steps performed during the compliance checking using
taint flow analysis.

3. The traces of the event log are replayed on the generated super graph
to determine the cases that violate the defined rules (Section 4.3.4).

Figure 4.1 shows the overall architecture and the performed steps of the
compliance checking algorithm.

In the following, each step is described in detail.

4.3.1 Taint Flow Analysis

The basic idea of our algorithm is derived from the static analysis of pro-
grams, used for finding security vulnerabilities in software applications, also
called taint flow analysis. It detects possible security vulnerabilities through
analyzing data flows, e. g., JavaScript variables in web applications [Gua+11].
Each variable that can be modified by external sources (e.g., user inputs) must
be sanitized before it can be securely used in a data consumer for further
processing. Example 4.1 illustrates this case.

Example 4.1

Consider a simple JavaScript web application that shows a text input
field. The entered text is printed on the website if the user clicks on a
button.
var input = document.getElementById(’inputtext’).value;

document.writeln(input);
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Normally, the web application works as expected and shows the entered
text. However, if the user enters a modified text that contains executable
code, this code is executed as soon as the user clicks the button. User
input with malicious code that is not sanitized leads to unexpected
behavior.

Our backward compliance checking approach is inspired by the same idea.
Instead of modeling compliant process behavior as process models or business
rules, we suggest the use of conformance-establishing activities, similar to
sanitizers in taint flow analysis. The easiest way to explain the concept is to
introduce a simple example (see Example 4.2).

Example 4.2

In a procurement handling process, the order of goods corresponds
to a sensitive producer of a potentially non-compliant execution. Each
purchase order must be followed by the receipt of goods at a certain
point in time. In this case, the delivery of the goods is the conformance-
establishing activity in the process. Organizations do not want to pay
an incoming invoice for goods that they have never received. Every
good should be delivered before the invoice payment, which is the
consumer activity in this process.

Generally speaking, processes consist of sensitive consumer activities, e. g.,
the payment of an invoice, that are relevant for compliance checking. These
consumer activities are typically associated with a producer activity, e. g.,
the creation of a purchase order, that triggers the consumer activity to be
executed. For the process to be compliant, a conformance-establishing ac-
tivity, e. g., the delivery of the purchased goods, must be executed between
the producer and the consumer activity. This conformance-establishing ac-
tivity refers to the sanitizer in taint flow analysis because it marks a process
execution as compliant.

The basis of our compliance checking approach is a process map, generated
from an event log according to Definition 2.4.1. The process map consists of
all activities and transitions that are observed in the event log. Each activity
in the event log refers to a node in the process map, and transitions between
activities correspond to the edges in the process map. From a process map, a
realizable sequence of transitions can be constructed:

Definition 4.1 (Path). Let P = (N∗, E∗) be a process map, then a path from
activity m to activity n is a sequence of transactions 〈e1, e2, ..., ej−1〉 for which
there is a sequence of activities 〈n1, n2, ..., nj〉 such that ei = (ni, ni+1) for
i = 1, 2, ..., j− 1. Note that the target activity of each transition is the source
activity of the subsequent transition.
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In contrast to a trace, which consists of a sequence of the activities, a path
consists of a sequence of transitions. Paths can be compliant, i. e., they either
do not contain a producer activity or they contain a conformance-establishing
activity or non-compliant, i. e., they contain a producer and a consumer
activity without a sanitizer activity in between.

Formally, compliance checking using taint flow analysis is described as a
3-tuple of producer, conformance-establishing, and consumer activities.

Definition 4.2 (Compliance Check). Let CC be the 3-tuple of producer, sani-
tizer, and consumer activities for a specific compliance check:

CC = (P, S, C) (4.1)

where P, S, C are three different sets of activities:

1. P is the set of producer activities which denote the creation of a non-
compliant path in the process map. Each generated non-compliant
path must be sanitized by a specific set of sanitizer activities before a
consumer activity can be executed conform.

2. S is the set of sanitizer activities, i. e., conformance-establishing activi-
ties, which mark non-compliant paths as compliant.

3. C is the set of consumer activities that are sensitive to non-compliant
paths. The corresponding compliance check is violated if there exists a
non-compliant path that contains a consumer activity.

Each compliance check defines a path in the process map, where the activity

order is specified as producer
requires−−−−→ sanitizer

be f ore−−−→ consumer. In between the
producer, sanitizer, and consumer activities, an arbitrary number of other,
even unknown activities, can be executed. The taint flow algorithm evaluates
if there exists a realizable path between a producer activity and a consumer
activity without having a conformance-establishing activity executed in be-
tween. The existence of such a realizable path in the process map indicates a
possible violation of the corresponding compliance check. However, due to
the construction of the process map, we do not know if the detected violation
has been executed. In Section 4.3.4, this specific issue will be addressed.
Multiple compliance checks are evaluated by maintaining a path for each
check individually. A path is only generated or sanitized by the activities of
the corresponding compliance check. This case is illustrated in Example 4.3.

Example 4.3

Consider the procurement handling process where the Purchase Order
activity generates a non-compliant path. The Goods Received activity is
the sanitizer, and the Invoice Payment is the consumer activity. Figure 4.2
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Figure 4.2: Path example for a given process map of a simple procurement pro-
cess [See+16a].

shows two process maps demonstrating how non-compliant path are
maintained. A non-compliant path is depicted as a red path with closed
circles left along with the process map.

In both process maps the node n2, which corresponds to the producer
activity, generates a non-compliant path. The node n3 is neither a
producer, sanitizer, nor a consumer activity. In this case, the non-
compliant path is forwarded to the subsequent activity. Up to this point,
both process maps are equal, but the last two activities are swapped.
On the left process map, the non-compliant path is sanitized at node n4

due to the sanitizer activity Goods Received, i. e., it is not forwarded. This
sanitizer activity leads to a compliant process execution because there is
no realizable non-compliant path between Invoice Payment and Purchase
Order. The right process map shows that the Invoice Payment activity is
part of a non-compliant path because it is not sanitized beforehand. As
a result, a compliance violation is detected.

Reps et al. [RHS95] proposed a framework for transforming different data
flow problems into a graph-reachability problem. Instead of searching for
realizable paths between producer and consumer activities in the process
map, the framework maintains a so-called exploded supergraph that contains
information about the reachability of nodes. In our approach, the exploded
supergraph is the process map "multiplied" by the number of compliance
checks, i. e., for each compliance check nodes of the process map are dupli-
cated. Edges in the exploded supergraph correspond to transitions of the
process map but are maintained by a distributive function (see Section 4.3.2).
The distributive function describes which edges are generated in the exploded
supergraph for each transition in the process map and depending on the
compliance checks to be evaluated. Due to this construction, the realization
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of non-compliant paths in the process map is equivalent to the reachability
of consumer activity nodes in the exploded supergraph.

Next, we provide a full definition of our approach based on our extended taint
flow algorithm. We highlight the parts where we have extended the original
algorithm [RHS95]. The taint flow algorithm in the context of compliance
checking is defined as follows:

Definition 4.3 (Taint Flow Algorithm). An instance of a taint flow analysis
problem TFA is a four-tuple of TFA = (P, D, F, M), where

1. P = (N∗, E∗) is the process map as defined in Definition 2.9.

2. D is the set of all considered compliance checks as introduced in Defi-
nition 4.2.

3. F ⊆ 2D → 2D is a set of distributive functions that describe the edges
in the exploded supergraph between activities.

4. M : E∗ → F is a function that maps P’s transitions to distributive
functions.

Distributive functions can be concatenated, i. e., they can be applied to a
sequence of transitions, to calculate the corresponding path in the exploded
supergraph. The concatenation of a distributive function f : 2D → 2D is called
a path function which is defined over a path q as follows:

Definition 4.4 (Path function). Let TFA = (P, D, F, M) be an instance of a
taint flow analysis problem, and let q = 〈e1, e2, ..., ej〉 be a non-empty path
in P. For a given distributive function f , the corresponding path function is
defined as p fq =d f f j ◦ ... ◦ f2 ◦ f1 for all i, 1 ≤ i ≤ j, and fi = M(ei). For an
empty path, the identity function is the path function.

The path function computes the realizable paths of an arbitrary activity pair.
If the path function is applied to a path starting with a producer activity
and ending with a consumer activity, the path function returns all realizable
non-compliant paths in the process map. In other words, the path function is
used to solve the taint flow analysis problem.

Definition 4.5 (Meet-over-all-valid-paths solution). Let TFA = (P∗, D, F, M)

be a taint flow analysis problem instance. The meet-over-all-valid-paths solution
of TFA is a collection of values MVPn defined as follows:

MVPn =
⋃

q∈paths(sp,n)

p fq(>) for each n ∈ N∗ (4.2)

where paths(m, n) is the function that returns all possible paths between m
and n in the given process map.
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The solution of the taint flow analysis problem is defined as the meet-over-
all-valid-paths solution that is the set of realizable paths between activities
calculated for each node in the process map. All compliance checks d ∈ D
that are potentially violated at activity n are contained in the set MVPn, i. e.,
there exists a realizable path between sp and n for every compliance check
d. We extend the violation criterion by saying that a compliance check d is
potentially violated only if n is a consumer activity of d.

4.3.2 Distributive Functions

Paths of the exploded supergraph are maintained by distributive functions
f : 2D → 2D. They determine when a non-compliant path is produced,
sanitized, or forwarded. Distributive functions are defined over activity
transitions in the process map and return, given a set of input paths, the set
of output paths.

In order to efficiently compute the result of the taint flow analysis, a special
non-compliant path is maintained: the 0-path, also called taint path. The main
idea is that a tainted path in the exploded supergraph can only be produced
by deriving a path from an already tainted path, i. e., a non-compliant path.
For being able to generate a tainted path from each node of the process map,
the special 0-path is always forwarded. A taint path can only be generated by
adding an edge from the 0-path. This is the case when the distributive function
generates a non-compliant path for a producer activity. Instead of searching
for realizable paths between activities, the problem is simplified: If there
exists a realizable path between the start activity and the consumer activity,
i. e., a non-compliant path exists at the consumer activity, the corresponding
compliance check is violated.

This simplification can be achieved by introducing a compact representation
of the distributive function (see Definition 4.6).

Definition 4.6 (Compact representation of a distributive function). The rep-
resentation relation R f ⊆ (D ∪ {0})× (D ∪ {0}) for a function f is defined
as follows:

R f =d f {(0, 0)}
∪ {(0, y) : y ∈ f (0)}
∪ {(x, y) : y ∈ f ({x}) and y /∈ f (0)}

Let f be a distributive function, then R f is the corresponding compact rep-
resentation of f . R f is a graph with 2 · (|D| + 1) nodes where each node
represents a compliance check d ∈ D and the 0-nodes.
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Similar to the concatenation of distributive functions f ◦ g, Reps et al. [RHS95]
prove that the concatenation also applies to the corresponding relational
representation R f ; Rg.

A distributive function modifies a path between nodes nsrc ∈ N∗ and ndest ∈
N∗ by applying three different types of operations:

forward A path is forwarded for all transitions in the process map when
no producer, sanitizer, or consumer activity is involved. For each com-
pliance check d ∈ D the path is forwarded, which leads to the following
path in the exploded supergraph:

〈nsrc, d〉 → 〈ndest, d〉

produce A path is produced for a compliance check d ∈ D when a producer
activity is part of the transition. In this case, a non-compliant path is
derived from the 0-path because only paths from the tainted path are
considered as non-compliant. In the exploded supergraph, the following
path is generated:

〈nsrc, 0〉 → 〈ndest, d〉

sanitize A non-compliant path is sanitized when a sanitizer activity is
involved in the transition of the process map. Given a compliance
check, no path is forwarded or produced in the exploded supergraph.

Example 4.4 shows how the three operations influence the paths of the
exploded supergraph visually.

Example 4.4

Consider two compliance checks, a and b. Figure 4.3 shows three exam-
ples that demonstrate the three different types of operations that can be
applied to non-compliant paths. The first example shows the forward
operation for two compliance checks, where the distributive function f
behaves like the identity function.

For the second example, a taint flow is produced for the compliance
check a; the other non-compliant path b is forwarded. In this case, the
distributive function returns the 0-flow and the compliance check a for
the 0-flow input to generate a taint flow. Given the compliance check b,
the distributive function forwards the non-compliant path for b.

The last example shows how a non-compliant path is sanitized. Here,
the distributive function returns the empty set for the corresponding
compliance check a and forwards all other non-compliant paths.
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Figure 4.3: Example paths for producer, sanitizer, and other activities represented as
a graph. Taint paths are marked as red with a closed circle and non-taint
paths as green with an open circle. [See+16a].

The three path operations are modeled as a single distributive function that
maintains paths for a given set of compliance checks. This function is defined
over a transition (nsrc, ndest) ∈ E∗:

f(nsrc,ndest)(x) =


{d : d ∈ producers(nsrc)} if x = 0

∅ if x ∈ sanitizers(nsrc)

{x} otherwise

(4.3)

The functions producers(n) and sanitizers(n) return a set of compliance
checks that contain the activity n ∈ N∗ as a producer or as a sanitizer activity.
The distributive function f is defined over all transitions ensrc,ndest = (nsrc, ndest)

in the process map, so it can be used for all transitions in the TFA problem
instance as M(ensrc,ndest) = f(nsrc,ndest).

The resulting exploded supergraph maintains all non-compliant paths for
all compliance checks and transitions in the process map. In particular, the
edges of the exploded supergraph correspond to the representation relations
introduced in Definition 4.6 on the transitions of the process map P. Each
transition appears |C|+ 1-times in the exploded supergraph to maintain the
non-compliant path for each compliance check and the 0-flow.

Definition 4.7 (Exploded Supergraph). Let TFA = (P, D, F, M) a taint flow
analysis problem instance, the corresponding exploded supergraph P# is
defined as follows:

P# = (N#, E#), where
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Figure 4.4: An example procurement handling process represented as a process map
(a) and the corresponding exploded supergraph (b). The example shows
two compliance checks a producer: n1, sanitizer: n2, consumer: n3; b
producer: n3, sanitizer: n5, consumer: n6. Open dots indicate that a path
is not reachable from 〈sp, 0〉 whereas closed dots indicate that there exists
a realizable path from 〈sp, 0〉, i. e., it is non-compliant. [See+16a].

N# = N∗ × (D ∪ {0})

E# = {〈m, d1〉 → 〈n, d2〉 : (m, n) ∈ E∗ ∧ (d1, d2) ∈ RM(m,n)}

The exploded supergraph contains all activities of the original process map
but they are of the form 〈n, d〉, where n is the activity in P, and d the
compliance check. Each edge of the process map is exploded into multiple
edges of the form 〈m, d1〉 → 〈n, d2〉, where each exploded edge corresponds
to a non-compliant path (d1, d2) of the compliance check d. A compliance
check is potentially violated if the exploded supergraph contains a realizable
path 〈sp, 0〉 → 〈n, d〉 (see Theorem 3.8 in [RHS95]), where n is a consumer
activity of d.

Example 4.5

Figure 4.4 shows how the corresponding exploded supergraph (b) is
defined for a given process map (a). The process map is generated from
an event log as defined in Definition 2.9, including the start and end
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node. A closed black circle indicates a reachable node in the exploded
supergraph, i. e., there exists a realizable path from 〈sp, 0〉. An open
black circle indicates a non-reachable node. The example evaluates two
different compliance checks.

The first compliance check a evaluates if, after each execution of the
Purchase Request activity, the Approved activity is performed before the
Purchase Order is executed. The process map illustrates that there is
no realizable path such that Purchase Order is executed without exe-
cuting Approve. In this case, the compliance check a is fulfilled. The
non-compliant path that is produced on the edge 〈n1, 0〉 → 〈n2, a〉 is
immediately sanitized at the transition n2 → n3. This results in the
meet-over-all-valid-paths solution of MVPn3 = {0}. The compliance
check is not violated, because the set does not contain a as the corre-
sponding compliance check.

The second compliance check b evaluates if after the execution of Pur-
chase Order the Goods Received activity is executed before the Payment is
performed. Purchase Order (n3) is a producer activity which is followed
by two other activities n4, n5. In both cases a non-compliant path is
produced: 〈n3, 0〉 → 〈n4, b〉, 〈n3, 0〉 → 〈n5, b〉. The non-compliant path
is destroyed between the transitions n5 → n4 and n5 → n6, because
Goods received is the sanitizer activity of compliance check b. How-
ever, the non-compliant path is forwarded 〈n4, b〉 → 〈n6, b〉 because
MVPn4 = {0, b}. In particular, the compliance check is potentially vi-
olated because n6 is a consumer activity of compliance check b, and
there exists a realizable path between 〈sp, 0〉 and 〈n6, b〉 which also
corresponds to the result of the taint flow analysis MVPn6 = {0, b}.

This section introduced the formal definition of compliance checking using
taint flow analysis. We want to show that the correctness proof introduced by
Reps et al. [RHS95] can also be applied to our approach.

Similar to the original method, we construct an exploded supergraph for
which we investigate realizable paths. Our exploded supergraph is con-
structed such that edges and nodes correspond to transitions and activities in
the given process map. Edges are added to the exploded supergraph accord-
ing to a customized distributive function that searches the process map for
sensitive producer and consumer activities. The distributed function creates
and forwards paths whenever the transition of the process map influences
the corresponding compliance check. Conformance-establishing activities
mark a given path as compliant, i. e., sanitizing a non-compliant path. Each
path through the exploded supergraph that is derived from the 0-path is a
realizable non-compliant path that can be executed according to the process
map. As a result, checking if there is a realizable path between a producer
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Algorithm 2: Tabulation algorithm

1 Function Tabulate(P#):
2 let (N#, E#) = P#

3 PathEdge← {〈sp, 0〉 → 〈sp, 0〉}
4 WorkList← {〈sp, 0〉 → 〈sp, 0〉}
5 ForwardTabulateSLRPs()

6 for n ∈ N∗ do
7 Xn ← {d2 ∈ D : ∃d1 ∈ (D ∪ {0}) such that 〈sp, d1〉 → 〈n, d2〉 ∈

PathEdge}
8 end

9 Function Propagate(e):
10 if e /∈ PathEdge then
11 insert e into PathEdge
12 insert e into WorkList
13 end

14 Function ForwardTabulateSLRPs():
15 while WorkList 6= ∅ do
16 select and remove an edge 〈n1, d1〉 → 〈n2, d2〉 from WorkList
17 for 〈m, d3〉 such that 〈n2, d2〉 → 〈m, d3〉 ∈ E# do
18 Propagate(〈sp, d1〉 → 〈m, d3〉)
19 end
20 end

and a consumer activity without a conformance-establishing activity in the
process map corresponds to the reachability of a consumer activity in the
exploded supergraph. Due to this construction, the same correctness proof
by Reps et al. is also applicable to our compliance checking method.

4.3.3 Tabulation Algorithm

In this section, we introduce our modified version of the tabulation algorithm
to efficiently calculate the solution of the taint flow analysis problem.

4.3.3.1 Worklist Algorithm

The tabulation algorithm is a work-list algorithm that maintains a set of all
existing PathEdges in the exploded supergraph P# of the process map P. A
PathEdge is a realizable path in the process map. The tabulation algorithm
only manages PathEdges of realizable paths from the start node sp for efficient
computation. Specifically, all PathEdges are of the form 〈sp, 0〉 → 〈n, d〉, where
n is a corresponding node in the process map P, and d a compliance check or
the 0-path.

The algorithm is illustrated in Algorithm 2. The WorkList is initialized with
the PathEdge 〈sp, 0〉 → 〈sp, 0〉 in Line 4. Realizable paths are stored in the
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PathEdge set. The main algorithm is performed by the ForwardTabulateSLRP
function which consists of a loop that is executed as long as the WorkList
contains items (Lines 14 - 20). The WorkList only contains PathEdges that have
not yet been visited by the algorithm. This condition allows the algorithm to
terminate, even for process maps that contain loops. The tabulation algorithm
propagates a new PathEdge 〈sp, 0〉 → 〈m, d3〉 whenever there is an edge of the
form 〈n2, d2〉 → 〈m, d3〉 ∈ E# (Lines 17 - 19). In order to determine if there
exists an edge, the actual implementation evaluates the distributive function
f(n2,m)(d), which returns non-compliant paths of the transition between n2

and m for a compliance check d.

As a result, the tabulation algorithm constructs a set of potentially violated
compliance checks d ∈ D ∪ {0} for each node n (Lines 6 - 8). A compliance
check is potentially violated if there exists a realizable path for d to node n,
which is equivalent to a PathEdge 〈sp, 0〉 → 〈d, n〉. The algorithm returns mul-
tiple sets Xn that contain the compliance checks for which a non-compliant
path from the tainted start node 〈sp, 0〉 exists. A potential violation is detected
when node n is a consumer activity of one of the compliance checks returned
by Xn.

4.3.3.2 Computational Complexity

The cost of the tabulation algorithm depends on the number of transitions
and the number of compliance checks including the 0-path that should be
evaluated. The output of the distributive function is calculated for each tran-
sition of the process map to determine if a non-compliant path is produced,
forwarded, or sanitized. For the specific case of checking compliance on
the control flow perspective, the output of the distributive function only
affects a single compliance check. Thus, it at most creates a single edge in
the exploded supergraph to be traversed. Typically, most transitions are not
influencing the output of the distributive function at all, which equals to the
identity function. As a result, evaluating the distributive function does not
add more than one edge that needs to be visited by the tabulation algorithm.
Under the assumption that all primitive operations have the same cost, the
runtime of the tabulation algorithm is O(|E| · |D|), where |E| is the number
of transitions, and |D| the number of compliance checks including the 0-path.

4.3.4 Replay of Process Variants on Exploded Supergraph

The final step checks each process variant of the event log if it follows a
violated path in the exploded supergraph or not. The algorithm replays the
corresponding trace on the taint flow analysis result because the process map
allows more behavior than what was observed in the event log. Each process
variant is replayed on the taint flow analysis result to check if there exists a
realizable path from a producer activity to a consumer activity. The replay
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of the process variants is efficient because the realizable paths have already
been calculated by the tabulation algorithm.

Each process variant is encoded as a sequence of activities

vi = 〈n0, n1, ..., nm−1, nm〉

such that the corresponding producer and consumer activities for each
compliance check d ∈ D are identified. Let ni ∈ producers(d) and nj ∈
consumers(d) in the sequence vi, such that

vi = 〈n0, n1, ..., ni, ni+1, ..., nj−1, nj, ..., nm〉

If producer and consumer activities are contained in the activity sequence
and all nodes in between ni+1, ..., nj−1, nj are part of a taint flow, the process
variant violates against the compliance check:

∀n ∈ 〈ni+1, ..., nj−1, nj〉 : d ∈ MVPn

As a result, the algorithm returns a list of affected process variants for which
the compliance checks fail.

4.4 Evaluation

This section presents the results of an experimental evaluation, investigating
the applicability and performance of the TFA compliance checking algorithm.

4.4.1 Experiment Setup

The TFA algorithm is implemented as a ProM1
6 [Ver+11] framework plugin.

For the evaluation, we use a set of real-life and synthetic event logs. A set of
compliance rules is defined to check the compliance of event logs.

4.4.1.1 Event Logs

Two real-life event logs from SAP ERP systems are used to evaluate the
applicability and performance of our algorithm. Both event logs contain
information about the execution of a procurement handling process. Fur-
thermore, synthetic event logs from a manually crafted BPMN model are
generated using PLG2 [BS11]. PLG2 is a tool that allows generating event logs
from process models by simulating the execution of the process model. For
the synthetic event logs, the probabilities for trace missing head, trace missing
tail, trace missing episode, perturbed event order, doubled events, and alien events
are set to 20% to obtain event logs with a certain amount of variation.

1 ProM is an open-source tool for process mining, developed by the Eindhoven University and
used in the academic field to quickly develop and explore new methods. It is highly extensible
via plugin capabilities.
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Event Log A Event Log B Event Logs C

Type SAP ERP SAP ERP Synthetic
Period 1 month 2 years -
Cases 873 651 709 1000 - 1 000 000

Events 5 077 3 880 138 varying
Event classes 20 35 15

Table 4.2: General properties of the event logs used in the evaluation.

All three event logs represent the same type of procurement handling process
with the same set of activities. A discovered causal-net from event log A is
shown in Figure 4.5. The underlying procurement handling process works as
follows: First, a shopping cart of items is created which is then approved by
the department manager. Each approved shopping cart leads to the actual
order of the requested items. After the purchased items are delivered, the
invoice is received which is then paid. Various non-compliant activities can
be executed although this process seems quite simple.

Table 4.2 shows a summary of the properties of the event logs used. Event
log A only consists of a few cases and events from a small period of one
month. Event log B consists of events collected over two years from a single
organization. The synthetic event logs (event logs C) vary in the number of
cases between 1, 000 and 1, 000, 000 to evaluate the performance concerning
the size of the event log.

4.4.1.2 Compliance Checks

A set of four compliance checks that refer to the procurement handling
process is defined for all three event logs introduced above. These compli-
ance checks are designed based on compliance guidelines that organizations
typically have to follow, and are defined as follows:

1. Approval of all Purchase Requests. Any free-text purchase request
of a department needs to be approved before the requested items are
ordered.

2. Approval of all Shopping Carts. Alongside free-text purchase requests,
departments can order from a set of items in a catalog like at an internal
"Amazon". Similar to purchase requests, these shopping carts also need
to be approved by a manager.

3. Approval of all Purchase Orders. The procurement department also
needs to approve purchase orders after the purchase request or the
shopping cart is approved by the department manager.

4. Goods must be received before Payment. Any good that is ordered
must be received at some time before the payment is executed.
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Figure 4.5: Causal net discovered with the heuristics miner of ProM showing the
event log A.

The four compliance checks are evaluated for the three different event logs
using the taint flow analysis algorithm, the LTL checker [ABD05], and the
Petri net pattern matcher [RFA12]. For each approach, the corresponding rule
representation is generated. Example 4.4.1.2 illustrates the generation of the
compliance check rules.

Example 4.6

In this example, we consider the "Approval of all Purchase Requests"
rule introduced above. It is transformed into a 3-tuple of activities as
follows:

CC = ({
producer︷ ︸︸ ︷

Purchase Request},
sanitizer︷ ︸︸ ︷

{Request Approval},
consumer︷ ︸︸ ︷

{Purchase Order})

The same rule is transformed into an LTL expression used for the LTL
checker and the Petri net pattern matcher as follows:

[]((task == "Purchase Request"

− > (task! = "Purchase Order"

_U task == "Request Approval")))
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4.4.1.3 Hardware Specifications

The performance benchmarks were performed on a computing server ma-
chine. The server machine was equipped with two Intel Xeon E5-2640 v2

processors, each contains 8 cores with 16 threads, and 64 GB of memory.
Ubuntu 16.04.4 LTS was installed on the machine along with OpenJDK
1.8.0_162. The developed ProM plugin was run on ProM 6.8 that comes with
the version for the LTL checker and the Petri net pattern matcher plugin.
Table 4.3 shows the specifications of the used machine.

Compute Server

Processor 2x Intel Xeon E5-2640 v2

Memory 64 GB
Storage 800GB SSHD

OS Ubuntu 16.04.4 LTS
Java VM Oracle OpenJDK 1.8.0_162

Table 4.3: Compute server specifications.

4.4.2 Measurement Method

For the experimental evaluation, two measures were evaluated to assess the
applicability and computational performance.

4.4.2.1 Number of Compliance Violations

The number of compliance violations was measured for the real-life and the
synthetic event logs to show the applicability. The four compliance checks
were validated against the event logs, and we measured the number of
compliant and non-compliant cases.

4.4.2.2 Runtime

The total runtime to execute the compliance checking algorithms until re-
trieving the violations was measured. All the required steps to check the
compliance of an event log were measured, including the conversion of the
event log into a process map, the execution of the tabulation algorithm,
and the replay of the process variants on the exploded supergraph. For the
LTL Checker and the Petri net pattern matcher, the computational time for
the actual rule checking was considered. All other computation times, such
as loading the event log as well as the visualization, were excluded. Each
performance benchmark was executed six times for each event log, ignoring
the first measurement due to the Java VM overhead for memory allocation.
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Event Log A (1) 65 65 65 65

(2) 0 0 0 0

(3) 342 342 342 (346) 342

(4) 3 3 3 (5) 3

Event Log B (1) 293 588 293 588 293 588 293 588

(2) 0 0 0 0

(3) 323 539 323 539 323 539 323 539

(4) 2 679 2 679 2 679 2 679

Event Log C (1) 24 24 24 (54) 24

(2) 24 24 24 (52) 24

(3) 52 52 52 52

(4) 155 155 155 155

Table 4.4: Number of cases that violate against a compliance check.

4.4.3 Results

This section presents the results of the experimental evaluation. A comparison
with the LTL Checker and the Petri net pattern matcher shows the differences
between the approaches.

4.4.3.1 Compliance Violations

The first part of the experimental evaluation shows the results of the detected
compliance violations.

We found deviations between the ground truth labels of the event logs and
the results of the compliance checkers. The LTL checker identified different
cases as violating, although they were not tagged as such. For event log A and
rule (3) there are 4 cases where no purchase order is performed. However, the
LTL Checker considers these as violations. Similar, two cases for rule (4) are
marked as violated by the LTL Checker because no payment was executed
at all. It turns out that the LTL expression is not semantically the same as
the compliance checks of our approach. The same issue is also present in
the synthetic event log, where traces are marked as violated although these
cases never executed the triggering producer activity. Table 4.4 shows the
compliance rule violations for each of the defined compliance rules and event
logs.
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Figure 4.6: Average runtime of the compliance checking approaches over a total
number of 5 runs.

4.4.3.2 Performance Benchmark Results

Figure 4.6 shows the average total computation time grouped by the different
approaches and event logs over 5 different runs.

We perform statistical significance testing to show that our approach outper-
forms the state of the art methods regarding performance. A non-parametric
Friedman test [Fri37] showed that the compared approaches perform sig-
nificantly2 different. Post-hoc analysis based on Wilcoxon signed-rank tests
and a Bonferroni correction shows that the taint flow analysis is statistically
significantly faster compared to all other methods. In particular, the deviation
becomes more visible for large event logs. This is not surprising because the
related work implementations do not group cases with the same sequence of
events together, but evaluate each case individually. For a fair comparison,
the event log B was modified to contain unique cases only. From the results,
the taint flow analysis algorithm is still able to check the compliance of the
predefined rules quicker.

Table 4.5 presents the performance results of the compared methods. A
detailed inspection of the benchmark results shows that the taint flow analysis
algorithm performs, on average, 7.7-times faster compared to the LTL Checker
for event log B and about 7.8-times faster for the event log A. For the synthetic
event log C, our algorithm performs 1.4-times faster on average across all
configurations. We found that the performance difference increases with
the increasing number of cases within an event log. The Petri net pattern

2 Non-parametric Friedman test [Fri37]; χ2(2) = 40, p < 0.001
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Log A Log B Log B Log C
(only variants)

Petri net Replay 433.4 415 602.6 35 707.0 44 214.0
LTL 89.2 50 666.2 14 244.3 4 401.2
TaintFlow 11.4 6 616.2 1 294.0 3 150.8

Table 4.5: Performance Benchmark (in milliseconds) for Taint Flow Analysis, LTL
Checker, and Petri net Replay.

matching approach performs slowly on large event logs. The adjustment
that is made to each trace to fit the predefined patterns may significantly
slow down the computation. Unlike the other two methods, the computation
time of the taint flow analysis algorithm mainly depends on the number of
compliance checks and the number of transitions in the process map. The
advantage of our approach is that the precomputed exploded supergraph
can be reused for each trace which significantly reduces computation time.

4.4.3.3 Influence of Event Log Size on Runtime Performance

The results of the two real-life event logs considered reveal that the number
of traces in an event log influences the performance of the algorithms. In this
experiment, the size of the synthetic event log is varied between 1, 000 and
1, 000, 000 traces to get a detailed benchmark of the performance between the
compared methods.
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Figure 4.7: Processing time in seconds for the synthetic event logs depending on the
number of traces in the log.
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The results reveal that the TFA algorithm outperforms the two other methods
concerning runtime performance. Specifically for large event logs, the number
of traces has a significant influence on the processing time of all methods.
Figure 4.7 reports the processing time across all runs depending on the
number of traces in the event log. Note that the figure shows an aggregated
view across all different runs, including the variation in the number of rules
and that the y-axis is log-scaled.

4.4.3.4 Influence of Number of Rules on Runtime Performance

According to the complexity analysis in Section 4.3.3.2, the runtime perfor-
mance of our approach is influenced by the number of rules. The exploded
supergraph maintains as many paths as compliance checks. The LTL checker
and the Petri net pattern matcher generate specific models for each of the
compliance rules. In this experiment, the number of rules is varied between 5
and 50 to get a detailed benchmark of the performance between the compared
methods.
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Figure 4.8: Processing time in seconds for the synthetic event logs (log size=50 000
and 200 000) depending on the number of rules in the log.

Figure 4.8 reports the processing time over two selected event log sizes and
the number of rules. The results indicate that the LTL checker performance
depends on the number of rules to check. For the Petri net pattern matcher, a
linear increase of processing time can be observed which is intuitive because
for each rule a separate Petri net is generated.
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4.5 Discussion and Limitations

We presented a backward compliance checking algorithm based on the
graph-reachability problem. However, there are some limitations and research
directions for future work.

4.5.1 Compliance Rules

The compliance rule definition is limited to a three-tuple of producer, sani-
tizer, and consumer activities. This notation is sufficient to describe a con-
siderable subset of the practically relevant control flow constraints, such
as the presence of an activity or the order of activities. However, complex
dependencies beyond activity co-occurrence and eventually/directly followed
relationships cannot be described with our simplified notation. Cardinal-
based rules, data-driven rules, related time rules, or static property rules
are not supported out-of-the-box. For instance, our approach also does not
support the direct inclusion of other process perspective such as the organiza-
tional perspective. Slight modifications on how the process map is generated
may overcome some of these limitations. For example, checking the segrega-
tion of duty rule or the four-eyes principle is possible if the concatenation
of activity and resource name of an event is used as the classifier function.
Further research how other complex business rules can be checked using our
approach is necessary.

4.5.2 Process Map

Instead of using process maps as the graph representation, other more expres-
sive process model representations, such as Petri nets or BPMN may be used
to build the exploded supergraph. Such models may be discovered by process
mining discovery algorithms with a high process model fitness. Accurate and
precise models may be used to avoid the replay of traces. However, using
different process model representations requires various modifications to the
tabulation algorithm to support additional semantics such as concurrency.

4.5.3 Counter-example

Another research direction for future work is to enhance the visual explana-
tion of counter-examples. In the current approach, only one counter-example
is presented to the analyst by highlighting one realizable path in the process
map. Further improvements such as highlighting all possible realizable paths
as well as how many cases are affected may be needed. This requires that the
replay of the traces need to be connected to the realizable paths identified by
the taint flow analysis.
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Figure 4.9: Overview of the chapter and contributions.

4.6 Conclusion

In this chapter, we presented a novel business rule evaluation algorithm
that transforms the problem of backward compliance checking into a graph-
reachability problem. In summary, the main contributions of this chapter
are:

1. A fast process compliance checking algorithm that identifies compliance
violations concerning the existence and the order of activities in event
logs.

2. The transformation of backward compliance checking into a graph-
reachability problem which can be efficiently solved using a modified
version of the dataflow analysis framework [RHS95].

3. A method to provide a visual explanation of the violated compliance
check, returning a realizable path in the process map.

4. Results of an experimental evaluation investigating the applicability
and computational performance of the TFA algorithm.

The backward compliance checking algorithm introduced in this chapter
identifies compliance violations concerning the existence and the order of
activities in event logs. Instead of using a model-based compliance checking
method, the problem is formulated as a graph-reachability problem. As
illustrated in Figure 4.9, backward compliance checking contributes to the
overall thesis goal of obtaining valuable insights about a business process
from event logs. Particularly, it allows analysts to check for typical process
problems concerning compliance issues on the control flow perspective. In
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the next chapter, we introduce a more autonomous algorithm to identify
process behavior changes over time.



5
Process Drift Detection

The previous chapter presented a targeted analysis task, validating business
rules in historic event logs. This chapter introduces a novel process analysis
algorithm that automatically detects process drifts in event logs to improve
process discovery. In particular, it identifies time periods when a business
process has changed its execution behavior and provides characterizations
of the process drifts detected. The algorithm explores subsets of consecutive
cases in an event log by discovering multiple process models and analyzing
their structural properties. The results of the algorithm can be visually high-
lighted in the corresponding process model. In contrast to the related work,
our algorithm is based exclusively on event logs, recognizes all different
process drift types, is resistant to noisy event logs, provides process drift
characterizations, and is parameter-free.

This chapter is organized as follows. In Section 5.1, a motivating introduction
to process drift detection is given. Next, related work in the field is introduced
(Section 5.2). Section 5.3 then presents a novel process drift detection algo-
rithm. Then, Section 5.4 reports the results of the experimental evaluation.
The chapter concludes with the limitations of the algorithm, and future work
(Section 5.5).

Publication: This chapter is based on the following publication:

Alexander Seeliger, Timo Nolle, and Max Mühlhäuser. “Detecting
Concept Drift in Processes using Graph Metrics on Process Graphs.”
In: Proceedings of the 9th Conference on Subject-oriented Business Process
Management - S-BPM ONE ’17. ACM Press, 2017. doi: 10.1145/3040565.
3040566.

Contribution Statement: I led the idea generation, implemented the
prototype and performed the data evaluation. Timo Nolle and Max
Mühlhäuser supported the conceptual design and contributed to the
writing process.
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5.1 Introduction and Motivation

Business processes are constantly changing due to various reasons. On the one
hand, a major part of these changes are caused by external forces such as sup-
ply and demand variations, seasonal shifts, or new customer needs [Bos+11;
Bos+14; Maa+15; Ost+16]. Organizations continuously deploy modifications
to their process with the goal of improving their execution and increasing
the return on investment. On the other hand, new governmental regula-
tions such as the Sarbanes-Oxley Act [SO02] or the General Data Protection
Regulation (GDPR) [Tan16] force organizations to change their processes.
Consequently, these changes lead to a different execution of the correspond-
ing business process, also called process drift. A process drift is a significant
behavior change of the execution of a process that occurs over time. The
change can be planned and documented, this is the case when the organization
has intended to apply a desired change to the process, or unexpected, this is
the case when the change is not intended [Maa+15]. Unexpected changes
may be introduced silently without the organization being aware of it.

In addition to the recognized necessity of process drift detection in the Process
Mining Manifesto (C4) [IEE11], there are two further important reasons for
identifying process drifts:

1. Organizations are specifically interested in detecting unexpected and
unknown process drifts because they affect process performance or lead
to compliance violations.

2. Existing process analysis methods assume stable processes that can lead
to incorrect conclusions [Bos+11]. Frequent changes to the process are
also reflected in an event log. These changes may lead to unexpected
results when applying process discovery to different periods.

Overall, process drift detection is valuable for organizations to identify hidden
process behavior changes as well as it helps to improve the result of other
process mining algorithms, such as process discovery.

We distinguish between four different types of process drifts according to
Bose et al. [Bos+14], depicted in Figure 5.1:

sudden drift A sudden drift occurs when a process is substituted by
another process and there is no overlap between the two processes.
Specifically, there exists a definite point in time when process behavior
has switched.

For example, sudden drifts often occur in emergency situations where
different procedures are applied immediately.
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Figure 5.1: Overview of the different process drift types. The x-axis refers to the time
and the y-axis refers to the different process behaviors. Shaded areas:
process instances. Adapted from [Bos+14].

gradual drift Similar to a sudden drift, a gradual drift occurs when a
process is replaced by a different process. However, both processes
coexist for a certain period until the new process gradually takes over.

For example, the introduction of an optimized workflow is rolled out
gradually over the departments.

recurring drift Different from sudden and gradual drifts, in which a
new process is established, the characteristic of recurring drifts is the
switch back and forth between processes. Such drifts are typically
observed in processes that are influenced by seasonal effects.

For example, organizations offer different products or services in sum-
mer than in winter.

incremental drift An incremental drift is characterized by a step-wise
replacement of the process whereas all other three drift types deal with
the change of a process from one to another.

For example, optimizing a business process requires multiple changes
in different departments which are rolled out incrementally.

This chapter introduces a process drift detection algorithm that aims at find-
ing sudden, gradual, recurring, and incremental drifts on the control flow
perspective of a process, regardless if they are planned and documented
or unexpected. The basic idea is to discover multiple process models from
subsets of consecutive cases in an event log. As a result, multiple process
models are discovered that represent the process behavior over time. The
algorithm inspects the characteristics of these process models by computing



102 process drift detection

various graph metrics. Statistical hypothesis testing is applied over consecu-
tive process models to detect process drifts. We use a custom sliding window
algorithm over consecutive cases in the event log to obtain the appropriate
number of cases to be considered for each subset. Furthermore, the computed
graph metrics provide further insights about the identified process drift,
unlike most related work do not provide any characterization.

5.2 Related Work

This section introduces related work in the context of process drift detection.
There are three fundamentally different approaches to detect process drifts:
(1) approaches using additional information of adaptive process management
systems, (2) clustering approaches that use similarity-based metrics over
traces, and (3) statistical approaches evaluating statistical significance tests.

We compare the related work based on a set of relevant requirements for
designing process drift detection algorithms:

(R1) Rely exclusively on event logs
The process drift detection algorithm should only consider data that is
stored in an event log. In real-life scenarios, other information about
the process and its execution, such as process models or other relevant
documentation, is typically not available.

(R2) Detect all process drift types
The process drift detection algorithm should not be limited to a specific
type of process drift but detect all four types [HBA15]. If only specific
process drift types are detected, this would require the analyst to have
at least some knowledge about which detection algorithm to choose
based on the types of process drifts present in the event log.

(R3) Resist noisy event logs
In order to apply the process drift detection to real-life event logs, the
algorithm should be resistant to noise because no real-life event log is
noise-free. Without proper handling of noisy event logs, the algorithm
produces a large number of false positives which should be avoided.

(R4) Provide drift characterizations
In case of a detected process drift, the algorithm should provide char-
acterizations that describe what changes were detected [CG12; Bos+14].
These characterizations help analysts to better understand what changes
were made to the process execution caused by the drift, and if necessary,
take actions to resolve potential process issues.

(R5) Be parameter-free
Since this thesis aims for algorithms that work for real-life event logs, it
is typically not feasible to set method parameters ideally due to the lack
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of sufficient prior knowledge. For this reason, process drift detection
algorithms should be parameter-free and adjust themselves to retrieve
robust and reliable results.
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Adaptive Process Management Systems
Günther et al. [Gün+06] # G# G#  G#

Similarity-based Detection
Lakshmanan et al. [LKD11]  #   #

Luengo and Sepúlveda [LS12]    # #

Accorsi et al. [AS12]  G#  G# #

Hompes et al. [HBA15]    # #

Statistical-based Detection
Bose et al. [Bos+11]  #  G# #

Weber et al. [WBT11]  #  # #

Carmona et al. [CG12]  #    

Bose et al. [Bos+14]  #  G# #

Maaradji et al. [Maa+15]    #  

Martjushev et al. [MBA15]  #  G# #

Kumar et al. [MTA15]  # G# # #

Ostovar et al. [Ost+16]    G# #

Richter and Seidl [RS17]  G#  #  

Table 5.1: Property comparison of process drift detection algorithms.  indicates
the fulfillment, G# indicates a partial fulfillment, and # indicates the
non-fulfillment of a requirement.

Table 5.1 compares the relevant research in each group regarding the estab-
lished requirements. The following sub-sections elaborate on the related work
in detail.

5.2.1 Adaptive Process Management Systems

Flexible processes in organizations can be supported by adaptive process
management systems [RRD04], which allow the organization to adjust the
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execution of a process at runtime. Adaptive process management systems
provide explicit information about process changes. Günther et al. [Gün+06;
Gün+08] investigate the adaptation of a process performed in Process-aware
Information Systems (PAISs). Such adaptive process management systems
generate additional information that can be explored using process discovery,
enabling to extract the changes to the process model.

Regardless of the rare use of adaptive process management systems in organi-
zations, maintained and accurate process models are required. Furthermore,
undocumented and unexpected process drifts cannot be detected with these
approaches.

5.2.2 Similarity-based Detection

Using explicit information from the inspection of adaptive process man-
agement systems to detect process drifts is often impossible because such
information is not available. However, recorded event logs indirectly reflect
the behavior change in process executions.

Existing approaches detect process drifts in event logs using cluster analysis.
Similar process behavior over time is grouped based on a feature vector that
describes the behavior of a trace in a process. Multiple groups indicate the
presence of a process drift in the event log. Specifically, temporal proximity
between traces allows identifying process drifts [LS12]. Accorsi et al. [AS12]
construct a similarity measure between activity pairs by inspecting their
relative position within a trace. Whenever their relative position changes
over time, the similarity between the activities changes as well; revealing a
structural change of the process. The authors propose an interactive approach
to visually determine the cluster cuts which indicate the start and the end of a
cluster on the time axis. Analysts can visually browse through the computed
chart and inspect the identified process drifts. Hompes et al. [HBA15] use
the Markov cluster algorithm for process drift detection. Here, clustering is
used to distinguish between mainstream and deviating behavior of traces
in an event log [HB15]. Markov clustering automatically finds the optimal
number of clusters to split the event log into appropriate clusters. For the
drift detection algorithm, the underlying assumption is that the number of
clusters stays stable when the behavior of the process remains similar. A
change to the number of clusters indicates a potential process drift.

Lakshmanan et al. [LKD11] introduce a spectral graph analysis approach
operating on sets of process traces. The authors define the graph space that
corresponds to the directly-follows relation of activities. For multiple sets of
traces, a separate graph is created describing the distances between traces as
the cosine similarity of directly-follows relations. Then, the eigenvalues of
each graph are computed to compare the different periods.
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Similarity-based approaches exclusively rely on the information stored in
event logs and use clustering or graph analysis to detect the different process
behaviors. In general, these approaches are resistant to noisy event logs and
reliably detect potential process drifts of all types. However, all methods
require the user to set specific parameter values to work appropriately. In
most situations, this is trial-and-error because the actual process drifts are
unknown.

5.2.3 Statistical Hypothesis Testing based Detection

Another research stream uses statistical hypothesis testing to detect significant
deviations between cases of different periods in the event log.

Bose et al. [Bos+11; Bos+14] extract several global and local features from an
event log to capture the dependencies between activities over time. Process
drifts are detected by exploring two consecutive fixed windows of cases over
the partially sorted event log. For each of the features, a statistical hypothesis
test detects significant deviations between two consecutive windows. The
approach only finds sudden process drifts whereas other types of drifts are
not detected. An extension to this work, which additionally finds gradual
drifts, is introduced in [MBA15]. Both approaches require prior knowledge
about the process to optimally set the size of the inspected windows. In
real-life scenarios this is an unrealistic assumption, causing a try-and-error
practice. The window size heavily influences the performance of the detection,
and it is not feasible to explore all possible window sizes.

A parameter-free fully automated approach is presented by Maaradji et
al. [Maa+15]. Instead of extracting numerous features from traces, the authors
use statistical hypothesis testing over the distribution of process runs. The
issue of setting an appropriate window size is avoided by using two adaptive
sliding windows. A process drift is detected whenever the distribution across
runs is statistically different. Runs are defined by the α-concurrency derived
from the α-miner [AWM04]. An extension to this method is presented in
[Ost+16] which also supports the detection of process drifts in event streams.
Using event streams instead of historic event logs allows detecting process
drifts even if the process instance is still running. A real-time approach
using probabilistic deterministic finite automata is presented in [WBT11].
Other researchers use event correlations [MTA15] or learn internal represen-
tations [CG12].

Most of the work only inspects the control flow perspective of processes,
but other perspectives are also good indicators for process drift detection.
In particular, operation times of activities are of high interest because they
inherently affect the performance of the overall process execution. TESSER-
ACT [RS17] uses a rolling average over the completion times of activities to
identify temporal process drifts in event streams.
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Similar to distance-based approaches, statistical-based process drift detection
methods exclusively rely on event logs. These approaches are typically very
robust against noisy event logs and provide accurate process drift detection.
However, most approaches again need the analyst to set appropriate param-
eter values to obtain useful results. Furthermore, only a very limited set of
approaches aims at detecting all process drift types, and only a few provide
explanations as to why a drift is detected.

5.3 Detecting Process Drifts using Graph Metrics

This section introduces a novel process drift detection algorithm. It compares
the structure of discovered process models from different subsets of consec-
utive cases in the event log by inspecting various graph metrics to detect
potential process drifts. Our process drift detection algorithm only requires a
time-sorted event log L. The algorithm is composed of four steps:

1. The event log is split into two smaller sub-logs containing consecutive
subsets of cases (Section 5.3.1).

2. For each of the two sub-logs process models are discovered using an
existing process discovery algorithm (Section 5.3.2). For the resulting
process models, specific graph metrics are calculated.

3. Statistical significance tests determine if the two consecutive sub-logs
differ from each other, detecting a process drift (Section 5.3.3).

4. The differences of the graph metrics are explored to characterize the
identified process drift (Section 5.3.4).

These steps are repeatedly executed until the event log is fully scanned.
Figure 5.2 shows an overview of the four steps of the process drift detection
algorithm.

In the following, each step is described in detail.

5.3.1 Splitting Event Log into Reference and Detection Window

In the first step, the event log is split by cases into two smaller consecutive
sub-logs, each of size w. In the following, the first sub-log is called reference
window R, where R ⊂ L, and the second sub-log is called detection window
D, where D ⊂ L. Each sub-log consists of complete cases which are not
split apart. Both windows are adjacent to each other and not overlapping:
R ∩ D = ∅. Combined, both windows build a composite window of size
2w cases over the event log split by time, such that R = 〈c1, c2, ..., cw〉 and
D = 〈cw+1, cw+2, ..., c2w〉 with ci ∈ L for 1 ≤ i ≤ 2w.
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1. Reference and Detection Window

Reference Window Detection Window

Actual Process DriftCases in the Event Log

2. Compute Graph-Metrics / Edge and Node Occurrence

 𝑟 = [0, 3, 2, 0.98, 2, 8, …]Reference

Detection  𝑑 = [1, 3, 2, 0.96, 1, 8, …]

3. Perform a Statistical G-Test to Detect Process Drifts

𝑝𝑣𝑎𝑙 = 𝐺 − 𝑇𝑒𝑠𝑡  𝑟,  𝑑

0

1
Localize the process drift by

searching in the detection window.

4. Determine Structure of the Process Drift

!

Figure 5.2: Overview of the Process Drift Detection Algorithm.
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The fundamental idea of our process drift detection algorithm is to find
consecutive sub-logs that significantly deviate from each other, i. e., where
cases of the reference and the detection window are different. The algorithm
detects a potential process drift if there is a deviation between the two
windows. Instead of relying on a fixed window size that needs to be defined
based on prior knowledge about the event log, an automated adaptive sliding
window approach is used. Algorithm 3 summarizes the adaptive sliding
window approach. The algorithm starts with a window size w = 100 (Line 1)
and increases the size by a factor of 1.2 if no significant difference between the
windows is found (Line 23). The algorithm increases the window size up to
200 cases to reduce computational time. If the maximum size is reached, the
algorithm moves the reference window to the start of the detection window
and resets the window size to w = 100 (Line 25 - 28). Here, we assume that
there exists no process drift within the inspected composite window, and
the algorithm moves to the next set of cases in the event log. However, if a
significant difference is detected between the two windows, the algorithm
considers a candidate process drift within the composite window.

The accurate position of the candidate process drift is located by repeating
significance testing on a smaller window size. Specifically, the considered
search space only contains the cases that are in the detection window for
which a candidate process drift is detected. The window size is set fixed to
half of the current window size (Line 6). Similar to the candidate process
drift detection, the smaller window is moved step-by-step over the search
space to locate the accurate position of the process drift. The first positive
significance test marks the position between the two consecutive windows
as the location of the candidate process drift (Line 12 - 16). However, if no
significance test is positive, the size of the window is adjusted and moved
one window size forward (Line 18 - 21). The algorithm uses an early stopping
heuristic (Line 10) to reduce the number of statistical significance tests. The
heuristic inspects the probability value of the tests to cancel the process drift
search in the given search space.

5.3.2 Compute Process Models and Graph Metrics

In the next step, we mine process models from both sliding windows to
determine the deviations of the process execution. The basic idea is that a
process drift results in two different process models. We use the Flexible
Heuristics Miner (FHM) (see Section 2.4.2) to mine the process models. The
advantage of FHM is that it exhibits fast computation and good abstraction of
the event logs. It also solves the issues with noisy event logs and concurrent
activities. Minor deviations caused by noise in the event log don’t lead to a
change of the discovered process model because those deviations typically
occur less frequently.
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Algorithm 3: Adaptive sliding window algorithm for process drift detec-
tion.
input : An event log L that should be scanned
input : Significance level threshold
output : A list D of process drift positions in the event log

1 w← 100; maxSize← 200; i← 1
2 while i < |L| − w do
3 re fstart ← i; re fend ← i + w− 1
4 detstart ← i + w; detend ← i + 2w− 1

5 if g-test(L[re fstart : re fend], L[detstart : detend]) < threshold then
6 found← f alse; wnew ← w

2 ; lastI← detend

7 for j← detstart − wnew to detend − wnew + 1 do
8 lastI← j + 2wnew − 1
9 pval ← g-test(W[j : j + wnew − 1], W[j + wnew : j + 2wnew − 1])
10 if p̂val − pval < −0.5 then break;
11 p̂val ← pval
12 if pval < threshold then // drift found?

13 D ← D ∪ {j + wnew}
14 i← j + wnew
15 found← true
16 end
17 end
18 if not found then // no drift found, reset window

19 w← w · lastI/detend
20 i← i + w
21 end
22 else
23 w← 1.2w; // increase window size

24 end
25 if w ≥ maxSize then
26 w← 100; // no drift found

27 i← i + maxSize; // reset and set new reference window

28 end
29 end

We compare and detect deviations between the discovered process models
P = (N, E) by calculating different graph metrics:

• Number of activities |N| and transitions |E|: The number of activities and
transitions are indicators for the change of executed activities. New
activities lead to more, skipped activities lead to fewer nodes and edges.

• Graph density: The graph density is the ratio between activities and tran-
sitions. It serves as an indicator for a change to the process complexity.
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New or deprecated process variants result in a higher or lower density
value.

D =
|E|

|N| · (|N| − 1)
(5.1)

• In- and out-degree: With the in- and out-degree of each activity |in(ni)|,
|out(ni)| for ni ∈ N, a change to specific activity sequences can be
detected. This graph metric is relevant for characterizing the process
drift.

• Occurrence of activities and transitions: The occurrence of activities and
transitions, i. e., the number of cases that contain a specific activity or
follow a specific transition, are indicators for gradual or incremental
drifts. They measure the number of cases that follow other transitions
through the process model due to the drift.

Graph metrics are calculated for both windows and stored in a vector, de-
noted as~r for the reference window and ~d for the detection window. Each
dimension of the vector corresponds to a single graph metric. For instance,
the first dimension corresponds to the graph density. Note that the degree is
calculated for each activity, and the occurrence is calculated for each activity
and transition in the sub-log of the respective window.

5.3.3 Perform a G-Test on the Graph-Metrics

This section describes how statistical significance testing over the graph
metrics is used to identify process drifts. In general, statistical significance
testing is used in observational studies or experiments to assess evidence
about some claim about the population from which the gathered sample
data has been drawn. Every statistical significance test starts with a null
hypothesis (H0). In our case, the null hypothesis is that the two consecutive
subsets of cases follow the same process behavior. That is, whether the
observed distribution over the transitions in the detection window is equal
to the expected distribution of transitions in the reference window. The null
hypothesis is rejected if the probability value (p-value) is lower than a given
significance level α. Whenever the null hypothesis is rejected, a potential
process drift is reported.

We use the G-Test [McD09] in favor of the Chi-Squared test because the
G-Test is more robust and recommended for smaller sample sets [McD09].
The p-value for the G-Test is calculated using the following formula:

G = 2 ∑
i

Oi · ln
(

Oi

Ei

)
(5.2)

where Oi is the observed occurrence of a transition i and Ei is the expected
occurrence of a transition i under the null hypothesis. The sum is only taken
over all non-zero occurrences.



5.3 detecting process drifts using graph metrics 111

In our conducted experiments, the occurrence of activity transitions as well
as the graph metric for significance testing yielded the best results. However,
all metrics are kept to characterize the process drift in a more detailed fashion
(see Section 5.3.4).

5.3.4 Characterization of the Process Drifts

In this section, we describe how the graph metrics are used for characterizing
detected process drifts, i. e., what kind of structural changes or modifications
were made to the process. For instance, one might be interested in the activi-
ties that are executed before the drift but skipped afterward. The algorithm
relies on the process model and the graph metrics that are already calculated
in the previous step.

For characterizing the process drift, the in- and out-degree of activities are
explored by the process drift detector. Changes to the in- and out-degree of
activities indicate new or removed transitions between activities, and thus
structural changes to the process execution. If there are differences between
the reference and the detection window, the detector collects the number
of cases following the changed transition. Collected information is used to
annotate and highlight the process drift in the process model visually.

Example 5.1 illustrates the characterization of the process drifts on a simple
example process.

Example 5.1

Consider an example process model which refers to a procurement
handling process. First, a customer creates a Purchase request which
is Approved before a Purchase Order is created. Next, the Goods Receipt
is generated before the Payment of the ordered goods is performed.
We add a process drift to the process by introducing a new transition
from the activity Purchase Order to Payment such that the activity Goods
Receipt can be skipped. Figure 5.3 shows a process model with the
added process drift marked in red.

Payment
Purchase
Request

Purchase
Request
rejected

Purchase
Request
Approval

Purchase Order Goods Receipt

Purchase
cancelled

Cancel

Approve

Figure 5.3: Process model in Business Process Model Notation (BPMN) with a
process drift marked in red [SNM17].
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We generated an event log that corresponds to the described procure-
ment handling process, containing 2 000 cases and a process drift at
case 1 000. Our process drift detection algorithm returns the following
results:

Graph Metric Change Absolute Value

Number of transitions -2 -
Number of activities -1 -

In- and out-degree

In-degree: Goods Receipt -1 0

In-degree: Payment -1 1

Out-degree: Purchase Order -1 1

Out-degree: Goods Receipt -1 0

Transition frequency

Purchase Order→ Goods Receipt -16 0

Goods Receipt→ Payment -16 0

Purchase Order→ Payment 14 24

Table 5.2: Graph metrics computed by the process drift detection algorithm.

Table 5.2 shows the detected changes to the graph metrics. The algo-
rithm found that the Goods Receipt activity is skipped which results
in a decrease of two transitions and a decrease of one activity. Con-
sequently, the in- and out-degree of Goods Receipt is reduced by one,
leading to a total value of zero. Note that the in-degree of Payment and
the out-degree of Purchase Order is reduced by one, although only a
single activity is removed. The reason is that the process drift detector
did not precisely find the drift at case id 1 000, but at case id 1 020.
As a result, 20 cases were put into the reference window, leading to a
detection delay of 20 cases.

Payment
Purchase
Request

Purchase
Request
rejected

Purchase
Request
Approval

Purchase Order Goods Receipt

Purchase
cancelled

Cancel

Approve

-16 (0) -16 (0)

14 (24)

Figure 5.4: Resulting annotations to the process model in BPMN with a pro-
cess drift marked in red.
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The process drift detection algorithm uses the changes to the frequency
of transitions between the reference and the detection window to reason
about the actual process drift. According to Table 5.6, the number of
cases that follow the transition between Purchase Order and Goods Receipt
dropped from 16 to 0. Equally, the transition between Goods Receipt and
Payment dropped from 16 to 0 cases. On the contrary, the number of
cases that follow the transition between Purchase Order and Payment
increased from 10 to 24 cases. The resulting process model with the
annotations of the detected process drift is depicted in Figure 5.4.

5.4 Evaluation

This section presents various experiments that evaluate the performance of
our process drift detection algorithm. The algorithm has been implemented
as a ProM plugin [Ver+11] for evaluation purposes.

The evaluation of the process drift detector is twofold:

1. We compare the accuracy of the process drift detection algorithm with
other related methods (see Section 5.4.2).

2. We compare the extracted characteristics with the injected process drifts
of the event log to evaluate the validity of the provided results (see
Section 5.4.3).

5.4.1 Experiment Setup

We use a benchmark data set of 72 synthetic event logs that was introduced
in [Maa+15]. The benchmark is constructed from a base process model (see
Figure 5.5) with 15 different activities. The base model is systematically
modified to produce event logs with different patterns of process drifts (see
Table 5.3). The modifications to the base model are categorized into three
simple drift patterns: insertion ("I"), resequentialization ("R"), and optional-
ization ("O"). More complex process drift patterns are generated from the
combination of simple drift patterns which result in additional event logs
("IOR", "IRO", "OIR", "ORI", "RIO", "ROI"). The generated event logs are com-
posed of a fixed number of 9 process drifts, generated by alternating cases
between the base and the modified process model.

In the evaluation, the event logs are varied in size (see Table 5.4). Each
event log is annotated with the positions of the process drifts for evaluation
purposes; these are not used for the detection.

For comparison, three other methods from the related work are applied to
the same benchmark. First, the method of Bose et al. [Bos+14] is considered
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Figure 5.5: Base BPMN model of the benchmark dataset [Maa+15].
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Process Drift Pattern Category

re Add/remove fragment I
cf Make two fragments conditional/sequential R
lp Make fragment loopable/non-loopable O
pl Make two fragments parallel/sequential R
cb Make fragment skippable/non-skippable O
cm Move fragment into/out of conditional branch I
cd Synchronize two fragments R
cp Duplicate fragment I
pm Move fragment into/out of parallel branch I
rp Substitute fragment I
sw Swap two fragments I
fr Change branch frequency O

Table 5.3: Process drift patterns of the benchmark event logs [WRR08; Maa+15].

Bose et al. Maaradji et al. Ostovar et al. Seeliger et al.

Log Size |L| = {2500, 5000, 7500, 10 000}
Window Size 100 auto 100 auto
Noise Level - - 0.0 -
Sensitivity - - very high -

Table 5.4: Evaluation setup of all compared process drift detection methods.
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Figure 5.6: F1-score across all process drift patterns compared with the related work.
Filled diamond (u) indicates the mean.

which is based on a fixed sliding window. In the experiments, a fixed win-
dow size of 100 is used. Second, the adaptive sliding window method of
Maaradji et al. [Maa+15] is used. Lastly, we compare the α+ based method
of Ostovar et al. [Ost+16] using the adaptive window starting with a size of
100, the noise level of 0.0, and a sensitivity of very high.

5.4.2 Accuracy Results

In the first part of the evaluation, we measure the F1-score and the average
detection delay to evaluate the performance of the process drift detectors. In
this context, precision is defined as the probability that the system detects a
true process drift. The recall is defined as the probability that the detected
process drift is a correct drift [Ho05]. The average detection delay indicates
how many cases early or late the detected drift deviates from the actual drift.

Figure 5.6 shows the F1-scores for the compared methods summarized across
all process drift patterns. The detailed results are reported in Table 5.5.
In the experiment, our algorithm gathered an overall F1-score of 0.9466
(σ = 0.0971), compared with the second best method from Maaradji et al.
with 0.9068 (σ = 0.2160), followed by the method of Ostovar et al. with 0.8121
(σ = 0.1393), and the approach from Bose et al. 0.7011 (σ = 0.3075). For 16

out of 18 process drift patterns (see Figure B.1), our algorithm achieved F1-
scores in the range between 0.9 and 1.0. Our process drift detection algorithm
provides better overall performance results for the F1-score compared to the
related work. Only for the process drift patterns lp and OIR, the related work
produces better results than our algorithm. The reason is that the FHM does
not detect the activity loop which results in no change to the process model,
and thus to no detection of the process drift. Furthermore, the experiments
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Figure 5.7: Average delay across all process drift patterns (lower is better). Filled
diamond (u) indicates the mean.

Approach F1-Score Delay
Mean σ Mean σ

Bose et al. 0.7011 0.3075 41.17 37.56

Maaradji et al. 0.9068 0.2160 59.15 34.15

Ostovar et al. 0.8121 0.1393 234.95 212.37

Seeliger et al. 0.9466 0.0971 23.56 12.92

Table 5.5: Results of the experimental evaluation of the process drift detection meth-
ods.

revealed that the method of Bose et al. does not detect the process drift
patterns cb and cm. The adaptive sliding window method of Maaradji et al.
produces similar results as our algorithm, but it has issues with the process
drift pattern cd.

In Figure 5.7 the average detection delays across all process drift patterns
are depicted. The detailed results are reported in Table 5.5. Our process drift
detection algorithm has the lowest detection delay with an average delay
of 23.6 (σ = 12.9) cases. The method of Bose et al. is the second best with
an average delay of 41.17 (σ = 37.6) cases. The third best is the method of
Maaradji et al. with an average delay of 59.2 (σ = 34.2) cases, followed by
Ostovar et al. with 235.0 (σ = 212.4). It is noteworthy that for the process
drift pattern fr the average delay of the method of Bose et al. lies over 160
cases. This detection delay is quite high compared to the two other methods
(see Figure B.2).
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5.4.3 Characterization Extraction Results

In the second part of the evaluation, we evaluated the extracted characteriza-
tions of our process drift detection algorithm. For each of the process drift
patterns (see Table 5.3), we compare the extracted characterizations with
the real modifications of the benchmark dataset. Example 5.2 illustrates the
comparison of the single process drift pattern cb.

Example 5.2

The cb process drift pattern introduces a new conditional transition from
the activity Assess eligibility to the transition Check if home insurance quote
is requested. This new transition should be found as the process drift
characterization. Figure 5.8 shows the corresponding process model.

When running the algorithm, the following graph metric changes are
observed:

Graph Metric Change Value

Out-degree: Assess eligibility 1 -
Out-degree: Check if home insurance qu... -1 -

Assess eligibility→ Prepare acceptance... -8 16

Assess eligibility→ Send home insurance... 10 10

Assess eligibility→ Reject application -7 26

Check if home...→ Send home insurance... -12 0

Check if home...→ Send acceptance pa -3 9

Table 5.6: Observed graph metric changes and absolute values of transitions
for the given example.

The graph metric changes indicate that the activities Assess eligibility and
Check if home insurance quote is requested are involved. The new transition
from Assess eligibility to Send home insurance quote is recognized by the
occurrence increase from 0 to 10 cases. At the same time, the transition
Check if home insurance quote is requested to Send home insurance quote
is removed, indicated by the change from 12 to 0. The new transition
allows bypassing the activity Prepare acceptance pack and Check if home
insurance quote is requested.

Table 5.7 shows the different characterizations extracted by our algorithm
for each simple process drift pattern. A correctly identified characterization
is marked with a checkmark (3) whereas an incorrect characterization is
marked with a cross mark (7).
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Figure 5.8: Process model of the cb process drift pattern event log [Maa+15].
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Characterization Found

re Remove of Assess eligibility 3

cf Send acceptance pack and Send home insurance 3

quote are sequential
lp - 7

pl Check credit history, Assess Loan risk and 3

Appraise property are sequential
cb New transition from Check if home insurance quote is 3

requested to Send home insurance quote
cm Check if home insurance quote is requested 3

followed by Prepare acceptance pack
cd New transition Appraise property to Assess loan risk 3

Remove transition Appraise property to Assess eligibility
cp Detection of a loop 7

pm New transition Check if home insurance quote is 3

requested to Prepare acceptance pack
New transition Prepare acceptance pack to Verify
repayment agreement

rp Replace events 3

sw Remove transition Send acceptance pack to Verify 3

repayment agreement
Remove transition Assess eligibility to Prepare
acceptance pack
Remove transition Send home insurance quote to Verify
repayment agreement
Add transition Send home insurance quote to Prepare
acceptance pack
Add transition Send acceptance pack to Prepare acceptance
pack
Add transition Assess eligibility to Verify repayment
agreement

fr - 7

Table 5.7: Characterizations extracted from the contributed algorithm for each pro-
cess drift pattern.
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The results show that our algorithm correctly identifies the characteristics of
the process drift in 9 out of 12 process drift patterns. For three patterns the
algorithm is not able to identify the correct characteristics; in two cases the
algorithm is not able to identify any characteristics at all.

5.5 Discussion and Limitations

We presented a process drift detection algorithm based on process models to
detect behavior changes. However, there are some limitations and research
directions for future work.

5.5.1 Drift Types

Our process drift detection algorithm detects all four process drift types but
cannot distinguish between them. However, it may be necessary to identify
the drift type, such as recurring drifts, to reveal further insights. With the
current hypothesis testing and adaptive sliding window approach, identifying
the different process drift types is not possible.

Another limitation is the characterization of drifts, which only yields useful
explanations for simple drift patterns. We found that process drifts containing
fragment modifications, sequentialization, skipping, additional transitions or
activities, and replacements were correctly characterized. However, complex
drift patterns, such as multiple combinations of simple drift patterns or
frequency changes, yield inaccurate and incomplete explanations. The use
of graph metrics, as proposed in our approach to characterize complex
drift patterns, does not seem sufficient to provide useful information here.
In particular, we observed that in situations were a process drift leads to
major structural changes, the results of our characterization approach are
rather limited. It might be interesting to investigate context-aware process
mining techniques to compare process models of different periods to enhance
characterization.

Our approach is also limited to the control flow perspective to detect process
drifts in event logs. Other perspectives, such as the organizational perspective,
can also reveal process drifts that cannot be identified by analyzing the control
flow only. A possible approach is to use the multi-perspective heuristics miner
to also include other perspectives to the discovered process model [MDR17].

5.5.2 Process Model Discovery

The process drift detection algorithm discovers process models with the FHM
algorithm. As a result, the quality of the detected process drift relies on
the quality of the discovered models. In some situations, the FHM tends to
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generate inaccurate and unsound process models which lead to inaccuracies
of the calculated graph metrics. Highly complex process models with a low
replay fitness can result in wrongly detected process drifts. In future work,
a more accurate and reliable process discovery algorithm may be used to
overcome the above issues.

5.5.3 Visualization

The current implementation only provides a basic visualization of the process
drifts identified. A more sophisticated visualization method that shows how
many instances have exactly followed the new path through the process
model may help to better understand the process drift. Only the instances of
the consecutive windows are currently used to calculate the visual process
model annotations but these only represent a small subset of cases.

5.6 Conclusion

In this chapter, we presented a novel process drift detection algorithm that
enables the detection and characterization of process drifts from event logs.
In summary, the main contributions of this chapter are:

1. A parameter-free process drift detection algorithm that is based on
a custom-designed adaptive sliding window approach. It evaluates
the deviation of discovered process models by performing statistical
significance tests on certain graph metrics.

2. A method to extract process drift explanations using graph metrics of
discovered process models. It identifies which activities and transitions
have changed, and how many cases follow the identified new behavior.

3. Results from an experimental evaluation investigating the detection
accuracy and delay of the algorithm introduced in this chapter.

The process drift detection algorithm introduced in this chapter identifies
changes to the process behavior over time and provides insights about what
has changed. As illustrated in Figure 5.9, process drift detection is based on
the process knowledge artifact framework and autonomously obtains valuable
insights about changes to the process. Identified process changes help analysts
better understand the process by pointing to interesting time periods when
the process has changed. Process behavior can not only change over time,
but different process behavior may also occur simultaneously. This is the
case when different departments execute the process differently. However,
this different behavior cannot be identified by process drift detection. In the
following chapter, we introduce a multi-perspective trace clustering algorithm
that can split an event log into subsets of cases with similar behavior to close
this gap.
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6
Hybrid Feature Set Trace Clustering

The previous chapter presented a process drift detection algorithm, iden-
tifying changes in process behavior over time. This chapter introduces a
trace clustering algorithm that splits an event log into subsets of cases with
similar process behavior that occur simultaneously, i. e., at the same time.
In particular, we introduce Hybrid Feature Set Trace Clustering, which is a
multi-perspective trace clustering algorithm that combines the control flow
and the data perspectives. On the one hand, the edit distance between activity
sequences is used to calculate the similarity on the control flow perspective.
On the other hand, the algorithm uses frequent itemset mining to identify co-
occurring case attributes to find similarities of cases on the data perspective.
Our algorithm maximizes the fitness of the corresponding subset process
models to find the optimal balance between both similarity metrics. In partic-
ular, it automatically optimizes the number of clusters, the balance between
the considered process perspectives, and the parameter for the frequent
itemset mining.

This chapter is organized as follows: First, a short introduction to trace
clustering is given in Section 6.1. Next, the related work in the context of trace
clustering is discussed (Section 6.2). Section 6.3 describes our trace clustering
algorithm that incorporates the control flow as well as the data perspective to
generate clusters. In Section 6.4 the evaluation of the algorithm is presented.
The chapter concludes with the limitations of the presented approach and
potential future work (Section 6.5).

Publication: This chapter is based on the following publications:

Alexander Seeliger, Benedikt Schmidt, Immanuel Schweizer, and Max
Mühlhäuser. “What Belongs Together Comes Together. Activity-centric
Document Clustering for Information Work.” In: Proceedings of the 21st
International Conference on Intelligent User Interfaces - IUI ’16. New York,
NY, USA: ACM Press, 2016, pp. 60–70. doi: 10.1145/2856767.2856777.

Alexander Seeliger, Timo Nolle, and Max Mühlhäuser. “Finding Struc-
ture in the Unstructured: Hybrid Feature Set Clustering for Process
Discovery.” In: Business Process Management. Cham: Springer Interna-
tional Publishing, 2018, pp. 288–304. doi: 10.1007/978-3-319-98648-
7_17.

125

https://doi.org/10.1145/2856767.2856777
https://doi.org/10.1007/978-3-319-98648-7_17
https://doi.org/10.1007/978-3-319-98648-7_17
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Figure 6.1: Process map of the BPI Challenge 2019 event log showing all observed
activities and transitions.

Contribution Statement: I led the idea generation, implemented the
prototype and performed the data evaluation. Timo Nolle, Benedikt
Schmidt, Immanuel Schweizer and Max Mühlhäuser supported the con-
ceptual design and contributed to the writing process.

6.1 Introduction and Motivation

Process discovery is an essential part of process mining because it helps
analysts and organizations to understand the actual use of their supporting
Process-aware Information System (PAIS) [Aal11]. Many process discovery
algorithms (see Section 2.4) are designed for relatively structured processes,
but many of today’s business processes are executed in flexible environ-
ments [BA09; VF10; Goe+11; RW12]. For instance, processes in health care,
product development, or customer service have a high density of cases with
a high variety of complex behavior. Consequently, two challenges need to be
addressed:

1. The high variability of process executions leads to highly complex and
inaccurate process models [BA09; VF10; Aal16] (see Figure 6.1). Such
discovered process models are hard to understand for analysts [MRC07],
and navigating through them requires extensive knowledge about the
process. That is why they are also often called spaghetti models.

2. Behavioral differences on other process perspectives (e. g., case at-
tributes; see Section 2.2.3) are neglected, i. e., process discovery mostly
only considers the control flow perspective of a process to obtain pro-
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Trace Clustering

Event Log Sub-logs

Model discovered

for each cluster

Figure 6.2: Overview of trace clustering applied to a single event log.

cess models. For instance, patients in a hospital go through the same
admission process, but they are then divided into emergency and non-
emergency patients. Although the executed sequence of activities is
similar, patients are treated by different staff which may influence
throughput time. As a result, process models discovered by algorithms
that only consider the control flow may show misleading duration
times.

Trace clustering aims to address both issues by splitting the event log into
a set of similar sub-logs, i. e., a subset of cases with similar behavior (see
Figure 6.2). Instead of applying process discovery to the entire event log,
it is applied to each of the sub-logs individually, resulting in a set of pro-
cess models that reflect the different process behaviors. It has been shown
that these process models can have better fitness and precision [SGA09;
Wee+13; SB16], and they can be less complex because less process behavior is
contained [SB15]. However, existing trace clustering methods either require
additional information, e. g., the number of clusters to be generated, do not
optimize their clustering concerning process model quality, i. e., optimizing
for model fitness, or neglect other process perspectives, e. g., differences in
process behavior on the data perspective.

This chapter introduces a multi-perspective trace clustering algorithm that
automatically optimizes the resulting process models for fitness, incorporat-
ing both control flow and data perspectives. The decision to consider these
two perspectives follows the observation that the behavior of a case typically
depends on the context it is executed. We define two separate metrics, one
for the control flow and one for the data perspective, that are combined by a
weighting factor. The weighting factor is obtained automatically by solving
an optimization problem, that maximizes the fitness of the resulting process
models. As a result, process models discovered by our multi-perspective trace
clustering algorithm accurately reflect the different process behaviors that
exist in the event log.
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6.2 Related Work

This section introduces related work in the context of trace clustering. The
related work of trace clustering in process mining is categorized into (1)
similarity- and (2) model-based clustering approaches.

We compare the related work based on a set of relevant requirements for
designing trace clustering algorithms:

(R1) Optimize process model accuracy
The clustering result of trace clustering in process mining should be
guided by optimizing the accuracy of the resulting process models. It is
one of the four quality metrics in process mining to evaluate process
discovery [BDA14] (see Section 2.4.3).

(R2) Support multiple process perspectives
The control flow of activities is the basis for trace clustering in process
mining, but other perspectives should also be considered. Processes
should be seen as multi-perspective entities in which process behavior
is also only encoded into the case attributes of an event log [Jab+19].

(R3) Provide cluster explanations
The trace clustering algorithm should provide human understandable
explanations on why specific clusters are generated [DDB16]. Without
any explanations, clustering results may be difficult to interpret because
their discrimination is not visible to the analyst.

(R4) Be parameter-free
The trace clustering algorithm should be parameter-free, i. e., it should
only use an event log as the input. Clustering usually requires the
setting of appropriate parameter values, e. g., the number of clusters
to be generated. This is typically not possible because there is no
knowledge about the different process behaviors that are present in the
event log.

Table 6.1 compares the relevant research in each group regarding the es-
tablished requirements. A different comparison of similar related work is
introduced by Thaler et al. [Tha+15], who show some of the same observa-
tions as presented in this section. The following sub-sections elaborate on the
related work in detail.

6.2.1 Similarity-based Trace Clustering

The fundamental idea of similarity-based trace clustering is to project each
case of an event log into the vector space and determine the similarity
between two cases using a similarity function. The underlying assumption
is that similar cases are also close together in the vector space. An early
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Similarity-based Trace Clustering
Greco et al. [Gre+06] # # # #

Bose and van der Aalst [BA09] # # # #

Bose and van der Aalst [BA10] # # # #

Song et al. [SGA09] #  # #

Hompes and Buijs [HB15] #  #  

Evermann et al. [ETF16]  # # #

Appice and Malerba [AM16] #  # #

De Koninck et al. [DDB16] # #  #

Yang et al. [Yan+16] #   #

De Koninck et al. [De +17] # # # #

Delias et al. [Del+17] #  # #

De Koninck and De Weerdt [DD17] G# G# #  

Fani Sani et al. [San+17] #   #

Wang et al. [Wan+18] # # # #

Jablonski et al. [Jab+19] #  # #

Model-based Trace Clustering
Ferreira [Fer09] # # # #

Veiga and Ferreira [VF10] # # # #

De Weerdt et al. [Wee+13]  # # #

Ekanayake et al. [Eka+13]  # # #

Sun et al. [SBW17]  # # #

Chatain et al. [CCD17] # # # #

Table 6.1: Property comparison of trace clustering algorithms.  indicates the fulfill-
ment, G# indicates a partial fulfillment, and # indicates the non-fulfillment
of a requirement.
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approach to discovering expressive process models through clustering was
presented by Greco et al. [Gre+06]. Here, traces sharing similar subsequences
of activities are clustered together using the k-means clustering algorithm
(see Section 2.5.1). Different sequence feature vector encodings based on the
edit distance are explored and compared by Bose et al. [BA09; BA10]. Due to
the high sensitivity of the edit distance, the authors propose an automated
algorithm for deriving the edit costs.

Another research direction uses sequence alignment-based methods to cal-
culate the similarity between traces. Evermann et al. [ETF16] apply the
Smith-Waterman-Gotoh algorithm for sequence alignment to compute the
similarity between traces. After the similarity scores are adjusted by applying
multi-dimensional scaling, k-means clustering is used to obtain similar cases.
A further improvement to the clustering approach is introduced by Wang et
al. [Wan+18], who focus only on relevant activities. In that paper, the authors
introduce a constraint trace similarity metric based on activity dependencies.
In [DD17] the authors explore the stability of the clusters to determine the
appropriate number of clusters by iteratively comparing the similarity be-
tween cluster results of perturbed and unperturbed event logs. The number
of clusters is then determined by the most stable results.

Multiple process perspectives are considered by Song et al. [SGA09] who
introduce trace profiles. A trace profile is defined as a feature vector that
encodes different features and perspectives of a trace. For instance, duration
times between activities, resource allocation, and the order of activities are
separate trace profiles which can be individually selected for clustering.
The same authors evaluated different dimensionality reduction methods
for feature selection to improve clustering performance [Son+13]. In [HB15]
the authors discover deviating cases and process variants using the Markov
cluster algorithm. A co-training strategy that combines multiple trace pro-
files is proposed by Appice et al. [AM16]. The clustering result of a single
trace profile is constrained by the similarities of all other considered trace
profiles which iteratively converges towards a unique clustering pattern. VIT-
PLA [Yan+16] summarizes traces on multiple perspectives by aligning traces
and finding associations between trace clusters and trace attributes. Jablonski
et al. [Jab+19] introduce a multi-perspective trace clustering approach with
the ability to control the contribution of the different perspectives. However,
selecting appropriate weighting parameter values remains the task of the
user.

Considering different heterogeneous scaled similarity criteria can become
an issue when multiple criteria are combined. Delias et al. [Del+17] propose
an outranking approach that overcomes this issue by introducing an overall
combined similarity metric. Each criterion is assigned a weight that reflects
the voting power in the overall similarity metric. The outranking method
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ensures that individual criteria that do not match the majority of the other
criteria are ignored.

De Koninck et al. [De +17] incorporate expert knowledge to improve clus-
tering results. The basic idea is to guide the algorithm towards a clustering
result that is much more consistent with the user’s expectations. This can
be achieved by initializing the clustering with a partially clustered dataset,
either constraining the clustering or combining the clustering result derived
with expert knowledge with the regular clustering solution. A similar expert-
driven approach is proposed by Fani Sani et al. [San+17]. The approach uses
a subgroup discovery algorithm that is guided by previously selected target
variables.

A major issue with similarity-based trace clustering approaches is that they
do not consider the quality of the process models to generate clusters. Con-
sequently, clustering results are not optimized for process mining purposes,
for instance, process discovery. Most similarity-based approaches also lack
the ability to provide cluster explanations, or they need the analyst to set
appropriate parameter values to obtain valuable results.

6.2.2 Model-based Trace Clustering

Model-based trace clustering incorporates the quality of the resulting process
models, i. e., the process models discovered from the sub-logs, to guide the
cluster generation. One of the first model-based trace clustering approaches
is ActiTraC [Wee+13]. ActiTraC optimizes the result of the clustering such
that the fitness (see Section 2.4.3.1) of each of the discovered process models
is maximized. Instead of defining a similarity function between traces, can-
didate traces are iteratively assigned to a cluster. The quality of the cluster
is determined by applying the Flexible Heuristics Miner (FHM) (see Sec-
tion 2.4.2) and evaluating the fitness. The work presented in [SB15] extends
this work by adding the process model complexity of the resulting clusters
as a quality measure. A similar approach is presented by Sun et al. [SBW17]
who address the stability issue of ActiTraC. The average complexity of the
models is optimized before process models are optimized for fitness [SB16].

A first-order Markov Chain trace clustering method which models the se-
quences of activities is introduced in [Fer09; VF10]. For each of the clusters,
a separate Markov Chain is generated to determine the probability that a
trace is generated by this cluster. Traces are assigned to the clusters with
the highest probability. Chatain et al. [CCD17] introduce a trace alignment
clustering that is guided by the alignment with an existing process model.

Ekanayake et al. extend the idea of trace clustering by additionally slicing
the resulting process models into sub-process models to further improve the
comprehension of the models [Eka+13].
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Figure 6.3: Architectural overview of the hybrid feature set trace clustering algo-
rithm.

Model-based trace clustering approaches tend to provide better results from a
process mining perspective, i. e., they optimize the accuracy of the underlying
process models of each cluster. However, incorporating other perspectives
than the control flow is not possible. Additionally, generated clusters are typ-
ically not explainable in a human-friendly fashion, and, similar to similarity-
based approaches, they need the analyst to set appropriate parameter values.

6.3 Hybrid Feature Set Clustering

In this section, we introduce a multi-perspective trace clustering algorithm
that combines the similarity of cases on the control flow as well as on the
data perspective. The iterative algorithm is divided into three steps:

1. Candidate clusters are generated using a combined similarity function
for the given event log (Section 6.3.1).

2. The clustering result of the previous step is used to create non-over-
lapping clusters by removing duplicate cases from the clusters with the
least similarity (Section 6.3.2).

3. A novel optimization algorithm is applied, maximizing the fitness of
each of the mined process models to determine the optimal balance
between control flow and data perspective (Section 6.3.3).

Figure 6.3 shows the overall architecture and the performed steps of the
hybrid feature set trace clustering algorithm.

In the following, each step is described in detail.
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6.3.1 Generation of Candidate Clusters

In the first step, we define similarity functions that determine the similarity
between cases from the event log. We introduce two different similarity
functions, one for the control flow and one for the data perspective, i. e.,
the case attributes. The two similarity functions are then combined for the
generation of candidate clusters.

Definition 6.1 (Similarity Function). A similarity function on a set of cases C
is a function

sim : C × C → [0, 1]

where [0, 1] is the set of non-negative real numbers between 0 and 1, and for
all x, y ∈ C, the following conditions hold:

1. 0 ≤ sim(x, y) ≤ 1

2. sim(x, y) = 1⇔ x = y (identity of indiscernibles)

3. sim(x, y) = sim(y, x) (symmetry)

The similarity function returns values near 0 if the two cases are very dissim-
ilar, and values near 1 indicate very similar cases.

We construct a hybrid similarity function according to Definition 6.1 by
combining two separate similarity functions as follows:

• The control flow similarity function simlev calculates the similarity between
cases by inspecting the sequence of activities (see Section 6.3.1.1).

• The case attribute similarity function simitemsets determines the similarity
between cases by investigating the case attribute relationships (see
Section 6.3.1.2).

The hybrid similarity function joins both separate similarity functions by a
weighting factor (see Section 6.3.1.3).

6.3.1.1 Control Flow Similarity Function

We obtain the similarity between traces using the Levenshtein edit distance
[Lev66]. The Levenshtein edit distance between two traces is defined as
the minimum costs associated with transforming a trace to another one
by performing specific edit operations. The edit operations are insertion,
deletion, and substitution of an activity in the trace, each with the cost of 1.
We use the Levenshtein edit distance because we want to obtain process
models that have a high fitness. The edit distance has the characteristic that
small differences between traces have only a small effect on the distance.
At the same time, it is still sensitive to permutations, i. e., activities are
performed in a certain order, and loops, i. e., the repetition of activities.
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During the clustering, very similar traces may still be separated because the
edit distance at least gives them a small distance. This allows the process
discovery algorithm to generate process models with a higher fitness and
lower complexity.

Definition 6.2 (Levenshtein edit distance). Let L be the event log, L̂ be the
set of traces of L, and Xi, Y j ∈ L̂ be two traces of length i and j. We denote
Xi−1 as the subsequence of Xi with the first i − 1 activities. We define the
Levenshtein edit distance as follows:

lev(Xi, Y j) =



max(i, j) i f min(i, j) = 0

min


lev(Xi−1, Y j−1) + s(X(i), Y(j))

lev(Xi−1, Y j) + 1

lev(Xi, Y j−1) + 1

otherwise

(6.1)

where s(X(i), Y(i)) is an indicator function that equals to 0 if X(i) = Y(j),
and otherwise to 1. The three calculations of the inner minimum function refer
to the substitution, deletion, and insertion of activities. The outer maximum
function calculates the remaining costs if the sequences are of unequal length.

We denote simlev(Xi, Y j) as the normalized Levenshtein distance which di-
vides the costs by the maximum length of the traces. Example 6.1 illustrates
the Levenshtein edit distance between two traces using Equation 6.1.

Example 6.1

Let t1 = 〈a, b, c, d, e〉 and t2 = 〈a, b, g, d〉 be two traces. The Levenshtein
distance between t1 and t2 is lev(t1, t2) = 2.

a b c d e

0 1 2 3 4 5

a 1 0 1 2 3 4

b 2 1 0 1 2 3

g 3 2 1 1 2 3

d 4 3 2 2 1 2

Figure 6.4: The Levenshtein distance matrix which shows the calculation of
the costs and the minimum cost path.

The corresponding matrix that shows the calculation is depicted in
Figure 6.4. A diagonal jump in the matrix corresponds to the substitu-
tion operation (cf. first line of Levenshtein edit distance equation 6.1).
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Moving from one cell to another horizontal or vertically correspond to
the deletion or insertion operation.

6.3.1.2 Case Attribute Similarity Function

We determine the similarity of case attributes by investigating attribute-value
dependencies. The vector space that spans all attribute-value pairs of an event
log can become huge because many unique combinations of case attributes
and values can occur. Instead of comparing the case attributes individually,
the relationships between case attributes are explored. This approach has two
advantages:

1. The vector space of attribute-value pairs is much smaller.

2. Hidden attribute-value relationships between cases are revealed, which
can be used to provide cluster explanations.

The algorithm obtains the reduced vector space by mining frequent itemsets
from the case attributes that share the same sequence of activities. In particu-
lar, the FPclose algorithm (see Section 2.5.2.2) is used to mine closed frequent
itemsets to limit the number of itemsets that are extracted from the event log
given a certain minimum support threshold θ.

Each attribute-value pair of a case is converted into an index using integer
encoding Ia : Va →N. The integer encoding function assigns each attribute-
value pair a unique index. For converting all attribute-value pairs of a case
c ∈ L, we introduce a helper function encode(c) which applies Ia to all
attribute-value pairs of a case:

encode(c) = {Ia(#a(c)) : a ∈ A} (6.2)

encode(c) returns a set of indices which correspond to the attribute-value
pairs of case c.

All cases following the same sequence of activity, i. e., process variants, are
encoded and used as input for the FPclose algorithm. As a result, we obtain
sets of itemsets, i. e., indices, that frequently occur together. This approach
reveals certain case attribute patterns among cases of a process variant.

Let S ⊆ S , S being the set of all possible itemsets, and itemsets : L̂ → P(S)
be the function that applies FPclose and returns sets of itemsets for a given
trace t ∈ L̂.

We determine the similarity of two sets of itemsets Sa, Sb ⊆ S by the function
simitemsets that returns the relative amount of itemsets that are contained in
both sets.

simitemsets(Sa, Sb) =
2 · |Sa ∩ Sb|
|Sa|+ |Sb|

(6.3)
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6.3.1.3 Combined Similarity Function for Clustering

We define a combined similarity function that merges the output of the two
similarity functions to obtain the similarity matrix for clustering. However, the
two similarity functions deal with different types of input. The control flow
similarity function simlev consumes traces and the case attribute similarity
function simitemsets consumes itemsets derived from the frequent itemset
miner. We introduce a helper function that returns traces from a given itemset,
defined as follows:

traces(s) = {t : t ∈ L̂ ∧ s ∈ itemsets(t)} (6.4)

The combined similarity function sim(sa, sb) is constructed as follows:

sim(sa, sb) = w · sim∗lev(traces(sa), traces(sb))

+ (1− w) · simitemsets(sa, sb)
(6.5)

where sa, sb ∈ S. The weighting factor w of the combined similarity function
controls the balance between both similarity functions. It is noteworthy that
even if w = 1, the similarity function still incorporates the itemset similarity
because the combined similarity function is defined over itemsets. As a result,
cases that have the same set of itemsets will be clustered together.

Algorithm 4 shows the entire multi-perspective trace clustering specification
including the definition of the similarity functions, the combined similarity
function, and the clustering. First, all distinct traces L̂ of the event log L are
extracted by only considering the sequence of activities and applying the
activity classifier (see Definition 2.4) to each event (Line 1). Next, Lines 2 and
3 define the similarity function for the control flow (see Section 6.3.1.1). sim∗lev
defines the similarity between two sets of cases, calculating the pair-wise
similarity between traces and returns a normalized similarity value. Lines 4 -
8 refer to the encoding of the case attributes as well as the similarity function
for the data perspective (see Section 6.3.1.2). The combined similarity function
(see Section 6.3.1.3) is defined in Line 10 which calculates the similarity matrix
over all pairs of itemsets.

Finally, the similarity matrix M and the number of clusters n are the input for
the actual clustering algorithm. We use the Agglomerative Hierarchical Cluster-
ing algorithm (see Section 2.5.1.2) with ward-linkage to obtain the candidate
clusters. Line 13 defines the set of clusters that contain the corresponding
cases.

6.3.2 Generation of Non-Overlapping Clusters

The construction of Algorithm 4 leads to overlapping clusters because clusters
are based on itemsets and not on cases. We address this problem by removing
duplicate cases from the clusters where the similarity to all other cases is
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Algorithm 4: Algorithm to retrieve the clusters [SSM18].

1 Let L be the event log, and let L̂ = {(ĉ) : c ∈ L} be the set of distinct event traces
of L.

2 Define lev(x, y) as the edit distance of the event traces x, y ∈ L̂.
3 Define sim∗lev(X, Y) as the edit distance between two sets of traces X, Y ⊆ L̂:

sim∗lev(X, Y) = ∑
x∈X

∑
y∈Y

lev(x, y) / (|X| · |Y|)

4 Define cases(t) = {c : c ∈ L ∧ (ĉ) = t} as the cases following trace t ∈ L̂.
5 Define encode(c) = {Ia(#a(c)) : a ∈ A} with c ∈ L and I as an integer index

function; further let encodes(C) = {encode(c) : c ∈ C}.
6 Let S be the set of all possible itemsets, S ⊆ S and si be the i-th itemset in S.
7 Define itemsets : L̂→ P(S) as the function that returns the frequent itemsets

using the FPclose algorithm with θ being the minimum support threshold:

itemsets(t) = FPclose(encodes(cases(t)), θ)

8 Define simitemsets(Sa, Sb) as the similarity function of the itemsets with
Sa, Sb ⊆ S:

simitemsets(Sa, Sb) =
2 · |Sa ∩ Sb|
|Sa|+ |Sb|

9 Define traces(s) = {t : t ∈ L̂ ∧ s ∈ itemsets(t)} with s ∈ S to be the inverse
function of itemsets which returns the traces for a given itemset.

10 Define sim(sa, sb) as the combined similarity function with sa, sb ∈ S, w ∈ R and
0 ≤ w ≤ 1 to be the weighting factor:

sim(sa, sb) = w · sim∗lev(traces(sa), traces(sb)) + (1− w) · simitemsets(sa, sb)

11 Define M : S× S→ R|S|×|S| as the itemset similarity matrix

M = (mij) = sim(si, sj)

12 Let cluster(M, n) be the hierarchical clustering function that returns the cluster
index of each itemset as a vector of size |S| with n ∈N being the number of
clusters to generate.

13 Define C(k) to be the set of the traces in cluster k

C(k) = {cases(traces(sj)) | sj ∈ S ∧ cj ∈ cluster(M) ∧ cj = k}
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lowest regarding the control flow. Algorithm 5 shows how the overlaps are
resolved. The algorithm is repeated as long as there are no more cases to
remove.

Algorithm 5: Algorithm to resolve overlapping clusters

1 for C(i) ∈ C do
2 for l̂ ∈ C(k) do
3 for C(j) ∈ C do
4 if C(i) = C(j) then
5 continue
6 end
7 if l̂ ∈ C(j) ∧ simlev(C(i), l̂) < simlev(C(j), l̂) then
8 C(j)← C(j) \ l̂
9 end

10 end
11 end
12 end

As a result, cases that were previously assigned to multiple clusters are only
contained in the cluster with the most similar control flow. This heuristic
contributes to the goal of obtaining accurate process models for each cluster,
since common process discovery algorithms reconstruct process models only
based on the control flow.

6.3.3 Automatic Parameter Tuning

In the third and final step, the problem of finding appropriate parameters
for the algorithm is addressed. Most related trace clustering methods do not
provide any solution to this issue and solely rely on the expertise of the user
to make the decisions, i. e., trace cluster algorithms are not parameter-free (see
Table 6.1). However, the selection of appropriate parameter values heavily
influences the clustering result. Parameter values that work well for one event
log may not necessarily lead to good results for other event logs. Therefore,
parameter values need to be set for each event log individually. We design an
automatic parameter tuning approach to address this issue. It automatically
determines the best weighting factor of the combined similarity function w,
the minimum support threshold θ, and the number of clusters n. As a result,
our multi-perspective trace clustering algorithm only requires an event log to
perform trace clustering.

We construct an optimization problem to automatically obtain appropriate
parameter values. The optimization problem considers the following three
criteria:

• Fitness. The fitness measure (see Section 2.4.3.1) reflects the ability of a
process model to reproduce the process behavior contained in the event
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log. Maximizing the fitness leads to accurate process models that better
reflect the observed behavior recorded in the event log.

Definition 6.3 describes how the weighted fitness is calculated.

Definition 6.3 (Weighted Fitness). Let f itnessk the fitness of a model k
and nk the number of cases in k, then the weighted fitness is calculated
as:

Weighted Fitness =
∑N

k=1(nk · f itnessk)

|L| (6.6)

• Silhouette Coefficient. The silhouette coefficient (see Section 2.5.1.3) mea-
sures how well clusters are separated from each other. Maximizing the
silhouette coefficient value leads to clusters with cases that have a high
similarity to other cases in the cluster and a low similarity to objects in
other clusters.

• Number of Clusters. Without an additional boundary condition, the
optimizer algorithm increases the number of clusters to maximize the
fitness of the models. In particular, assigning each trace to a separate
cluster results in a fitness of 1 because each trace can be correctly
replayed by its corresponding process model. Such behavior is not a
desired property of the entire trace clustering algorithm.

The process model for obtaining the fitness is constructed by the FHM [WR11].
We choose the FHM algorithm because it is computationally efficient and
robust against noisy event logs. However, it should be noted that the FHM
may not always provide a good abstraction of the given event log, leading to
spaghetti-like process models.

We solve the described optimization problem by applying the Particle Swarm
Optimization (PSO) algorithm [KE95]. PSO is a nature-inspired optimization
algorithm for multivariate optimization problems, which only makes few
assumptions about the problem being solved. For instance, it does not require
the optimization function to be differentiable. Although the PSO algorithm
does not guarantee that an optimal solution is found, our experiments show
good results with reasonable effort and time (see Section 6.4.1.4).

The basic idea of PSO is inspired by the social interaction of individuals living
in groups, exchanging information to support each other. PSO maintains
a swarm of n moving particles ~p, each maintaining its own position, a
velocity and the best known position so far in the search space. Different from
evolutionary algorithms, information about the best position any particle has
found is shared among all particles. Initially, all particles ~p0 are randomly
distributed in the search space and assigned an initial movement velocity ~v0.
Particles move in time-discrete iterations and update their position based on
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the inertia ω, the best known position ~pbest, the global best position among
all particles ~gbest, the weighting factor ck, and the social weighting factor cs.

Definition 6.4 (Particle Swarm Optimization). For each round of the PSO,
the new velocity vector ~vn+1 is calculated as the follows:

~vn+1 = ω ·~vn + ck · r1 · (~pbest − ~pn) + cs · r2 · (~gbest − ~pn) (6.7)

where r1, r2 are drawn uniformly at random from [0, 1], updated in every
iteration. The standard parameters for PSO are ω = 0.72984, ck = cs =

1.496172 [CK02; BK07].

In our algorithm, we set the maximum number of iterations for PSO to 10 and
introduce a new stopping criterion that terminates the search for a solution
when the maximum fitness of 1 is reached for all process models.

In summary, the PSO algorithm finds appropriate parameter values for the
clustering by maximizing the fitness of the underlying process models. As a
result, sub-logs with traces of similar behavior on both, the control flow and
the data perspective are returned.

6.4 Evaluation

This section presents the evaluation results of the hybrid feature set trace
clustering algorithm on synthetic and real-life event logs. First, we evaluate
the cluster quality of our trace clustering algorithm with respect to cluster and
process mining evaluation measures (see Section 6.4.1.4). Second, we show
the applicability of our algorithm to real-life event logs (see Section 6.4.2).

For the evaluation, the hybrid feature set trace clustering algorithm was
implemented as a ProM plugin which is publicly available1.

6.4.1 Synthetic Event Logs Evaluation

We generated a set of synthetic event logs to evaluate the cluster quality of
our trace clustering algorithm and compared the results with the related
work.

6.4.1.1 Experiment Setup

There is no comprehensive set of benchmark event logs in the literature,
evaluating trace clustering approaches that focus on control flow and data
perspective. Due to the lack of available datasets, we generated a set of
synthetic event logs using the PLG2 [Bur16]. PLG2 is a tool that allows

1 Source code available at: https://github.com/alexsee/HybridClusterer

https://github.com/alexsee/HybridClusterer
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Model # at # tr # dpi max length out-degree

P2P 14 16 6 9 1.14

Small 22 26 6 10 1.18

Medium 34 48 25 8 1.41

Large 44 56 28 12 1.27

Wide 56 75 39 11 1.34

Huge 36 53 19 7 1.47

Table 6.2: Process models used for generating the event log: Number of activity types
(# at), number of transitions (# tr), number of variants (# dpi), maximal
trace length, and out-degree.

Figure 6.5: Causal net discovered by the heuristics miner of ProM showing the
synthetic P2P event log.

generating event logs from process models by simulating the execution of
the process model. We generated five different process models2 [NSM16]
which reflect different process complexities (i. e., varying number of activities,
maximum depth, and branching factor): Small, Medium, Large, Huge, Wide,
and a custom-designed model with human-readable activity names (see
Figure 6.5 and Table 6.2). Our synthetic data set must contain process behavior
that can only be distinguished by the combination of control flow and data
perspective.

PLG2 only supports the modeling of simple case attributes. However, for this
evaluation, the event logs must include dependencies of the case attributes
among each other as well as to the control flow (see Figure 6.6). In order
to generate representative case attributes, for each attribute a ∈ A a set
of randomly attribute values Va is generated, containing 20 different case
attribute values. Each case gets the attribute values for each of the case
attributes a sampled from Va. Causal relationships between case attributes
among each other and of case attribute values are introduced by forcing
certain combinations of case attribute values to occur more frequently than
others, depending on the sequence of activities. Consequently, the event
log contains sequences of activities with the same set of case attributes and
values. It is noteworthy that due to the random relationship generation,
different activity sequences may have the same attribute value pattern. As a
result, generated event logs contain patterns that correlate with the control
flow as well as the data perspective. For evaluating the clustering, a set of

2 Models are publicly available: https://doi.org/10.7910/DVN/QBL1K0

https://doi.org/10.7910/DVN/QBL1K0
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…… ……

1. Generate Attribute Values 2. Generate Attribute Dependencies 3. Combine Traces and Attributes

……

Figure 6.6: The synthetic event log generation containing different process behavior
that considers the control flow and case attributes.

five different event logs with the same configuration but different patterns is
merged that represent the ground truth data for the clusters.

In addition, we add a certain level of noise to the control flow in order to
make the synthetic event logs resemble reality better. In total, a set of 288

event logs was generated from the six process models with different log sizes
(1 000, 2 000, 5 000, 10 000), varying number of case attributes (5, 10, 15, 20) and
three different noise levels (0.0, 0.1, 0.2).

6.4.1.2 Evaluation Metrics

We evaluated the quality of the trace clustering algorithms by measuring
two types of quality metrics. First, we investigated the quality of the clusters
regarding the ground truth. In particular, we report the average F1-BCubed
and the Adjusted Rand Index (ARI) across all obtained clusters as introduced
in Section 2.5.1.3. Second, we investigated the quality of the process models
discovered for each of the obtained clusters. In particular, we report the
average fitness and the precision across all obtained clusters as introduced
in Section 2.4.3. The measures of each cluster are weighted according to the
number of cases within a cluster. We use the PM4Py implementation3 to
compute fitness and precision.

3 Open source process mining library for Python; available at http://pm4py.org/

http://pm4py.org/
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6.4.1.3 Trace Clustering Algorithms

We compare our multi-perspective trace clustering approach (HC) to the
following related work:

bag of activities (boa) [BA10] The bag of activities approach converts
the activity occurrence of each case into a feature vector. The pairwise
Euclid distance is stored as a similarity matrix which is used as the
input for hierarchical agglomerative clustering.

levenshtein edit distance (led) [BA10] The Levenshtein edit dis-
tance approach compares cases by calculating the costs to modify the
trace to another. The normalized costs are used to construct a similarity
matrix which is, again, the input for a clustering algorithm.

actitrac (atc) [Wee+13] ActiTraC iteratively builds clusters of traces
based on the fitness of the process models. Only traces that increase
or preserve the fitness of the process model are assigned to the cluster.
Instead of defining a similarity function, the algorithm tries to find an
optimal assignment of traces to clusters, maximizing the overall fitness
of each cluster.

context-aware-clustering (cac) [BA09] Context aware clustering is
based on the Levenshtein Edit Distance (LED) approach, but also con-
siders the context of the activities to determine the similarity of traces.

We consider two more approaches BOA+ and LED+ that are based on Bag-
of-Activities (BOA) and LED respectively. In this case, all traces that occur
less than 2-times in the event log are removed. Furthermore, the Flexible
Heuristics Miner (FHM) [MDR17] is used as the baseline without clustering.

Due to the lack of an automatic parameter tuning approach for BOA, LED
and Context-Aware-Clustering (CAC), the best results for the same or fewer
clusters as provided by the Hybrid Feature Set Trace Clustering (HC) algo-
rithm are considered. For ActiTraC (ATC) the standard settings are used: 80%
stopping criterion for the frequency-based and MRA distance-base selective
sampling.

6.4.1.4 Accuracy Results

This section presents the evaluation results of the synthetic event logs.

Weighted fitness. The measurements show that the weighted fitness is sta-
tistically significantly4 different across all evaluated event logs depending on
the applied method. Post-hoc analysis with Wilcoxon signed-rank tests and a
Bonferroni correction showed that trace clustering statistically significantly
increase the fitness of the process models compared to the FHM. The pairwise

4 Non-parametric Friedman test [Fri37]; χ2(7) = 590.43, p < 0.001
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Figure 6.7: Process model fitness after trace clustering aggregated across all synthetic
event logs with a noise level of 0.2.

comparison indicates no significant differences between CAC and BOA, as
well as between ATC and LED. Figure 6.7 shows the weighted fitness across
all synthetic event logs with a noise level of 0.2.

Precision. The precision measurements also show that the precision is
statistically significantly5 different across all evaluated event logs depending
on the trace clustering method. Post-hoc analysis with Wilcoxon signed-
rank tests and a Bonferroni correction indicated that all trace clustering
methods, except for the LED, produced process models with significantly
higher precision. There was no significant difference between HM and LED
(p = 0.078). Figure 6.8 shows the precision measurements across all synthetic
event logs with a noise level of 0.2.

F1-BCubed. The measurements of the F1-BCubed show that the quality of
the clusters is statistically significantly6 different across all evaluated event
logs depending on the trace clustering method applied. Post-hoc analysis
with Wilcoxon signed-rank tests and a Bonferroni correction, as well as
the Nemenyi test as demonstrated in [Dem06], shows that HC performs
significantly better than all other methods (see Figure 6.11). Based on the
critical difference, we found that BOA and BOA+ lie in the same significance
group. LED and LED+ lie in the same significance group and LED in the
same as CAC. The F1-BCubed measurements aggregated across all synthetic
event logs with a noise level of 0.2 are depicted in Figure 6.9.

Adjusted Rand Index. The measurements of the Adjusted Rand Index show
similar results compared to the F1-BCubed measurements. The non-parametric

5 Non-parametric Friedman test [Fri37]; χ2(7) = 613.09, p < 0.001
6 Non-parametric Friedman test; χ2(7) = 1458.3, p < 0.001
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Figure 6.8: Process model precision after trace clustering aggregated across all syn-
thetic event logs with a noise level of 0.2.
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Figure 6.9: F1-BCubed results after trace clustering aggregated across all synthetic
event logs with a noise level of 0.2.
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Figure 6.10: Adjusted rand index results after trace clustering aggregated across all
synthetic event logs with a noise level of 0.2.

Friedman test indicates that the Adjusted Rand Index is statistically signifi-
cantly7 different depending on the applied trace clustering approach. Post-hoc
analysis with Wilcoxon signed-rank tests and a Bonferroni correction indicate
significantly better results of our HC algorithm for the Adjusted Rand Index.
Furthermore, we found that there are no significant differences between the
LED and the LED+, as well as between the BOA and BOA+ methods.

Discussion. The results of the evaluation show that trace clustering in
general significantly improves fitness and precision of process models. We
found that all compared distance and model-based trace clustering methods
are useful to increase process model accuracy. However, we also found
that the related work only focuses on the control flow and neglects other
process perspectives. In our evaluation, our multi-perspective trace clustering
algorithm is the only approach that combines the control-flow and the data
perspectives. The existence of case attributes that are related to the execution
behavior of the process is essential to the HC method. We only investigated
synthetic event logs with such relationships. The results show significant
improvements in the F1-BCubed and Adjusted Rand Index measures. Other
comparable methods could show better performance if such relationships
would not be present.

6.4.2 Real-life Event Logs Evaluation

This section presents the results of the evaluation of the real-life event logs.

7 Non-parametric Friedman test; χ2(7) = 1520.9, p < 0.001
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Fitness Precision F1-BCubed ARI

FHM [MDR17] 0.8387 0.9617 - -
Bag-of-Activities [BA10] 0.9245 0.9958 0.5819 0.4417

Bag-of-Activities+ 0.9593 0.9963 0.5843 0.4414

Levenshtein [BA10] 0.9373 0.9936 0.5436 0.3871

Levenshtein+ 0.9653 0.9963 0.5529 0.3973

CAC [BA09] 0.9286 0.9903 0.5295 0.3301

ActiTraC [Wee+13] 0.9460 0.9398 0.4082 0.0360

Hybrid clusterer 0.9652 0.9827 0.8307 0.7628

Table 6.3: Performance of the related work and the hybrid cluster approach with
respect to process model and clustering evaluation; best values in bold
typeface.

1 2 3 4 5 6 7 8

CD

HC
BOA+
BOA
LED+

LED
CAC
ATC
FHM

Figure 6.11: Critical difference diagram for all methods on all synthetic event logs;
groups of methods that are not significantly different concerning the
F1-BCubed (at p = 0.001) are connected.
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Event log
Event log properties

Description# pi # ev # at # dpi

P2P 33 277 255 427 37 7 026 Procurement handling process
EV 1 434 8 577 27 116 Case handling system
HOSBILL 100 000 451 359 18 1 020 Hospital invoice billing
HOSLOG 1 143 150 291 624 981 Case handling in hospital
ROAD 150 370 561 470 11 231 Road traffic fine process
BPIC’19 251 734 1 595 923 42 11 973 Procurement handling process

Table 6.4: Overview of real-life logs: The number of process instances (# pi), number
of events (# ev), number of activity types (# at) and the number of variants
(# dpi).

6.4.2.1 Experiment Setup and Measurements

We used publicly available real-life event logs to measure the accuracy and
simplicity of the resulting process models after applying trace clustering.
Table 6.4 shows some basic statistics of the event logs used, originated from
different environments and containing different types of processes. All event
logs except for P2P are publicly available8.

Similar to the first evaluation part, the same configuration (see Section 6.4.1.3)
for the related work was used. Again, for BOA and LED the best results with
the same or fewer number of clusters as HC are reported.

Each used event log originates from a real-life information system without
any further information about how the process is intended to be executed.
Different from the first evaluation part, specific evaluation metrics like the
F1-BCubed and the Adjusted Rand Index (ARI) cannot be measured because
the desired clustering result is unknown. Instead, the fitness and precision,
as well as the number of clusters and the simplicity [Blu15] of the process
models, are measured.

6.4.2.2 Accuracy Results

The measurements of the weighted fitness show that trace clustering out-
performs the FHM except for the P2P dataset where BOA is slightly worse.
This result suggests that in most cases a single process model is not sufficient
for accurately representing the behavior of the event log. In particular, the
event logs with a high number of traces get a low fitness value. For the P2P,
HOSBILL, and BPIC’19 event log, the average weighted fitness across all
subset clusters and provided by the HC outperforms all other methods. The
event log HOSLOG shows a different result: the BOA+ and LED+ approach
outperform all other clustering methods with a perfect fitness. This result

8 http://data.4tu.nl/repository/collection:event_logs_real

http://data.4tu.nl/repository/collection:event_logs_real
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P2P EV HOSBILL HOSLOG ROAD BPIC’19

FHM 0.5435 0.7502 0.7630 0.2761 0.9112 0.4402

ATC 0.7716 0.9150 0.7625 0.3686 0.8942 0.6189

CAC 0.6384 0.9717 0.8413 0.1155 0.9548 0.5975

BOA 0.5337 0.7714 0.7823 0.4489 0.9805 0.5349

BOA+ 0.6928 0.9617 0.7824 1.0000 0.8822 0.5755

LED 0.6249 0.9601 0.8401 0.5644 0.9513 0.5622

LED+ 0.6999 0.9850 0.8460 1.0000 0.9821 0.5923

HC 0.7723 0.9788 0.9693 0.7949 0.9876 0.7501

Table 6.5: Results of the real-life event logs showing the average weighted fitness.

P2P EV HOSBILL HOSLOG ROAD BPIC’19

FHM 0.5800 0.4077 0.5000 0.0439 0.9763 0.8376

ATC 0.7321 0.8246 0.4007 0.0725 0.7464 0.6774

CAC 0.4485 0.9683 0.6068 0.1094 0.9928 0.7205

BOA 0.6678 0.9129 0.3507 0.1638 0.9860 0.6042

BOA+ 0.5155 0.9812 0.9922 0.9542 0.9861 0.7649

LED 0.4632 0.8591 0.2675 0.2671 0.9152 0.6977

LED+ 0.4787 0.9121 0.3914 0.9256 0.9879 0.8390

HC 0.6742 0.9450 0.6262 0.7327 0.8767 0.8821

Table 6.6: Results of the real-life event logs showing the average weighted precision.

can be explained by the characteristic property of the event log: it contains
almost as many variants as traces. Due to the filtering of both methods, only a
limited number of traces are considered. The CAC approach cannot properly
deal with the HOSLOG event log and produces clusters with a lower average
weighted fitness than the FHM. Table 6.5 summarizes the weighted average
fitness results.

The measurements of the weighted average precision show mixed results.
The HC approach outperforms the FHM except for the ROAD event log.
However, other trace clustering methods provide better precision results for
the event logs used. Table 6.6 summarizes the weighted average precision
results.

6.4.2.3 Process Model Simplicity Results

The number of clusters in combination with the fitness results is an indicator
of how good the trace clustering method can cluster the cases into clusters. In
general, a low number of clusters and a high fitness are desired. For the CAC,
BOA, BOA+, LED, and LED+ methods the number of clusters is reported
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P2P EV HOSBILL HOSLOG ROAD BPIC’19

ATC 260 4 3 721 4 12

CAC 5 9 9 5 16 8

BOA 5 11 10 7 15 6

BOA+ 5 14 3 4 13 3

LED 5 3 10 7 6 6

LED+ 5 9 9 3 17 9

HC 5 14 10 7 18 9

Table 6.7: Results of the real-life event logs showing the number of clusters.

that is lower than the result of HC with the best fitness. Those methods
do not provide an automatic approach to determine the optimal number of
clusters. For the P2P and HOSLOG event log, the ATC approach generates a
huge number of clusters although the fitness is comparable or lower than the
other methods. The BOA and LED methods generate process models with
a higher fitness for 3 out of the evaluated event logs with a lower number
of clusters than the HC method. Similarly, the BOA+ and LED+ methods
provide a higher fitness for 4 out of the evaluated event logs with a lower
number of clusters. Table 6.7 reports the number of clusters of all compared
methods across all event logs.

The results of the simplicity measure show a mixed result. For the P2P and
the BPIC’19 event log, the ATC method generates simpler process models.
However, the number of clusters is higher compared to the HC method,
indicating that a higher fitness is only possible when cases are distributed
to more clusters. The most simple process models for the EV event log are
generated by the BOA method. For the HOSBILL, HOSLOG, and ROAD
event log the HC method generates the most simple process models. The
results suggest that trace clustering, in general, does not generate process
models with lower complexity. Compared to the simplicity measurements of
the FHM, the results are only slightly better. Table 6.8 reports the result of the
average weighted simplicity of all compared methods across all compared
event logs.

6.5 Discussion and Limitations

This chapter presented a multi-perspective trace clustering algorithm to split
event logs into subsets of cases with similar behavior. However, there are
some limitations and research directions for future work.
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P2P EV HOSBILL HOSLOG ROAD BPIC’19

FHM 0.5773 0.5317 0.5273 0.5369 0.5254 0.5526

ATC 0.5132 0.5243 0.5405 0.5195 0.5151 0.5290
CAC 0.5640 0.5222 0.5235 0.5553 0.5160 0.5533

BOA 0.5675 0.5120 0.5205 0.5371 0.5213 0.5602

BOA+ 0.5326 0.4956 0.5241 0.5156 0.5155 0.5462

LED 0.5653 0.5280 0.5204 0.5350 0.5246 0.5564

LED+ 0.5371 0.5000 0.5181 0.5150 0.5095 0.5411

HC 0.5385 0.4972 0.5163 0.5065 0.5071 0.5468

Table 6.8: Results of the real-life event logs showing the average weighted simplicity.

6.5.1 Feature Space

A limitation of the approach is that it cannot include numeric case attributes
because frequent itemset mining is not able to obtain dependencies from nu-
meric attributes. However, numeric case attributes also influence the behavior
of the process. With the current method of obtaining relationships between
case attribute values, attributes with numeric values are not considered.

The current multi-perspective trace clustering approach only considers two
process perspectives: control flow and data attributes. Although other process
perspectives are also of high interest and reveal other process behavior
dependencies, this has not been investigated in this thesis. For future work,
it may be interesting to incorporate more than two process perspectives to
identify different process behaviors.

Our approach uses a manually designed vector space representation to
describe the control flow and the data attributes. In future work, the automatic
training of these representations, e. g., the training of word embeddings, may
significantly improve the overall performance of the multi-perspective trace
clustering. Recent work [DBW18] has shown that word embeddings can be
similarly applied to event logs of business processes.

6.5.2 Interestingness

Our trace clustering algorithm does not guarantee interesting clusters for the
analyst because it is a fully-automated algorithm that adapts itself to the given
event log. In particular, the algorithm has no notion about interestingness
and, therefore, can not optimize the result towards interesting clusters. The
result of the clustering algorithm is mainly balanced between the optimization
of process model fitness and the similarity of case attributes. Although the
event log may contain interesting case attribute relationships, these may not
be discovered because the algorithm prefers process models fitness over case



152 hybrid feature set trace clustering

attribute similarity. This behavior may lead to an clustering result that may
not match the analyst’s expectations because the analyst cannot control the
influence of process model fitness. It could be interesting future work to
give the analyst some control over how much influence the optimization of
process model fitness should have.

6.5.3 Runtime Performance

Although we have restricted the Particle Swarm Optimization (PSO) to a
maximum number of iterations and introduced a stopping criterion, the run-
time performance of our approach could still be improved. Due to the current
construction of the optimization algorithm, certain tasks are executed multi-
ple times and are not parallelized. Parallelization and further optimizations
may increase overall computational performance. It would be interesting to
investigate more efficient process discovery and trace alignment methods,
which are the bottleneck of our trace clustering approach.

6.6 Conclusion

This chapter introduced the Hybrid Feature Set Trace Clustering algorithm
which clusters event logs into smaller sub-logs of similar process behavior to
increase process model accuracy and reduce process model complexity. In
summary, the main contributions of this chapter are:

1. A parameter-free multi-perspective trace clustering algorithm that com-
bines the control flow and the data perspective of a process to generate
clusters of similar process behavior.

2. A combined similarity function that allows balancing the contribution
of both process perspectives considered, control flow and data.

3. An automatic parameter tuning that determines appropriate parameter
values such as the weighting factor, the number of clusters, and the
itemset support threshold by optimizing the fitness of the corresponding
process models of each cluster.

4. Results from an experimental evaluation investigating the accuracy of
the process models and adjusted rand index of the clusters. Further-
more, the practical feasibility of the approach.

Hybrid Feature Set Trace Clustering allows analysts to investigate the dif-
ferent process behaviors observed in an event log. It is a parameter-free
algorithm, enabling the application to real-life event logs without any prior
knowledge about the process inspected. As illustrated in Figure 6.12, this
algorithm is used in the next chapter to obtain subsets of cases that contain
different process behaviors. These subsets build the basis for guiding ana-



6.6 conclusion 153

Information Systems

Part IV:
Process Analysis Assistance

Part II:
Knowledge Extraction

Part III:
Process Analysis

Knowledge Artifact Framework
(Ch. 3)

Rule
Evaluation

(Ch. 4)

Process 
Drift 

Detection
(Ch. 5)

Multi-
Perspective 

Trace 
Clustering

(Ch. 6)

Intelligent Browsing
(Ch. 7)

Process Improvement
(Ch. 8)

Insights

Event Logs

Process 
model

Analytic
models

Compliance Performance

Itera
tiv

e Im
p

ro
v

em
en

t

Part V: Conclusion

Part I: Introduction

Process Knowledge ArtifactRaw Data Process Analysis Reporting

Figure 6.12: Overview of the chapter and contributions.

lysts towards interesting findings, improving the exploratory analysis for
unknown event logs. The following chapter introduces ProcessExplorer, an
interactive visual recommendation system, which integrates several chapters
of this thesis to enable fast data exploration.
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7
Intelligent Browsing

The previous three chapters investigated process analysis methods of targeted
and exploratory process mining tasks. This chapter introduces ProcessEx-
plorer, an intelligent and interactive visual recommendation system to enable
fast data analysis and exploration of large and complex event logs. It closes
the gap between autonomous targeted analysis tasks and the exploratory
process discovery. ProcessExplorer is inspired by the workflow of analysts
during the use of existing process mining tools to analyze discovered process
models. The system extends existing process mining tools by introducing a
recommendation engine that guides analysts towards automatically obtained
findings in event logs. Particularly, it suggests interesting subsets of cases
and computes insightful insights that analysts are typically interested in.
We describe the ProcessExplorer approach that is based on the process
knowledge artifact framework introduced in Chapter 3 and uses methods
introduced in Part II of this thesis to enhance the visual exploration of large
event logs.

This chapter is organized as follows: First, Section 7.1 gives a motivating
introduction to exploratory analysis in the context of process mining. Next,
related work is discussed (Section 7.2). In Section 7.3, the ProcessExplorer

approach is introduced that guides analysts during the analysis of event logs.
Section 7.4 describes the ProcessExplorer system that is used to evaluate the
usefulness of the approach. Then, Section 7.5 describes the results of a user
study with experts in the field. The chapter concludes with the limitations of
the presented work, and potential future work (Section 7.6).

Publication: This chapter is based on the following publications:

Alexander Seeliger, Timo Nolle, and Max Mühlhäuser. “Process Ex-
plorer: An Interactive Visual Recommendation System for Process Min-
ing.” In: KDD Workshop on Interactive Data Exploration and Analytics
(2018).

Alexander Seeliger, Maximilian Ratzke, Timo Nolle, and Max Mühlhäuser.
“ProcessExplorer: Interactive Visual Exploration of Event Logs with
Analysis Guidance.” In: Proceedings of the 1st International Conference on
Process Mining - ICPM’19 - Demo. 2019.

157
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Alexander Seeliger, Alejandro Sánchez Guinea, Timo Nolle, and Max
Mühlhäuser. “ProcessExplorer: Intelligent Process Mining Guidance.”
In: Business Process Management. Cham: Springer International Publish-
ing, 2019.

Contribution Statement: I led the idea generation, implementation of
the prototypes and performed the data evaluation. The student Fabian
Kaiser implemented the prototype user interface for the first user study.
The student Maximilian Ratzke implemented the prototype user interface
for the second user study. Timo Nolle, Alejandro Sánchez Guinea and Max
Mühlhäuser supported the conceptual design and contributed to the
writing process.

7.1 Introduction and Motivation

The workflow of analyzing event logs using today’s process mining tools is
highly exploratory. It is driven by the knowledge of the analyst and guided
by the desired analysis goal. Typically, the initial starting point of a process
mining project is the discovered process model derived from a recorded
event log of a Process-aware Information System (PAIS). Analysts inspect
the discovered process model using various methods, including the visual
inspection of the process model, the selection of subsets, and the computation
of Process Performance Indicators (PPIs). Due to the massive growth of
readily available event log data, the increasing complexity of the underlying
process, and the flexible execution of processes in businesses, the visual
exploration and analysis of processes incur several challenges.

As discussed in [SGA09], often only a highly complex and spaghetti-like
process model is reconstructed from an event log which is hard and inefficient
to analyze. Without a deep understanding of the corresponding process, the
elicitation of interesting insights and trends is non-trivial. Consequently,
analysts need extensive knowledge to correctly interpret the discovered
process model [MRC07], investigate different subsets of cases, and calculate
relevant PPIs before obtaining valuable insights and insightful visualizations.

We illustrate a scenario, which exemplifies the situation of an analyst may
encounter with currently available process mining tools: "Julia is an analyst
who is interested in the process performance of the BPIC 2019 event log. The
process discovery returns a spaghetti-like process model which reflects the actual
behavior of the process. To simplify the view, Julia manually filters cases based
on domain knowledge. For instance, she selects cases that start with a requisition
and are of item type “subcontracting”. Afterward, she computes the case duration
of the subset and compares it with the case duration across all cases. For this
particular selection, the case duration turns out to be significantly lower with 31.8d
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compared to 71.5d. Next, Julia considers a different selection and computes the case
duration again." [See+19a] Many of the tasks Julia has to perform are executed
manually, which is time-consuming and error-prone. Despite the increasing
number of available process mining tools, today’s tools only provide limited
support and guidance, hampering efficient exploration and analysis.

In this chapter, we introduce ProcessExplorer, an interactive visual recom-
mendation system for process discovery which is inspired by the workflow
of analysts. ProcessExplorer extends the capabilities of existing process
mining tools by providing automatic process analysis guidance. The system
introduces two types of recommendations:

subset recommendation. ProcessExplorer suggests subsets of inter-
esting cases that follow a similar process behavior observed in the event
log. Subset recommendations are similar to case filters in existing tools
but they are computed automatically from the event log. Typically,
the selection of cases is a trial-and-error method that depends on the
desired analysis goal and the discovered process model.

insight recommendation. For each identified subset, ProcessExplorer

suggests insight recommendations based on insightful PPIs characteriz-
ing the subset. Different from most existing process mining tools which
let analysts manually design dashboards with statistical aggregations
and charts, ProcessExplorer aims to automate this task.

ProcessExplorer applies diversifying top-k ranking with interestingness and
support as the score to give analysts an extensive overview of the inspected
process. The subset and insight recommendations are automatically computed
from the event log only. ProcessExplorer does not make any assumptions
about the underlying process and requires no parameter setup. Any event
log that fulfills the requirements for process mining [IEE11; Aal11] can be
used.

7.2 Related Work

This section introduces related work in the context of process analysis as-
sistance. We divide the related work of this chapter in (1) exploratory data
analysis, (2) data insights, and (3) interactive browsing in process mining.

7.2.1 Exploratory Data Analysis

Analyzing process models discovered from event logs is a highly exploratory
data analysis (EDA) task [Aal11] that deals with the issue that users typically
do not know the characteristics of an event log beforehand. In the data mining
community, automatic visualization recommendations are proposed to sup-
port the user during data exploration. Self-organizing dashboards for visual
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analytics are generated by VizDeck [Key+12], which automatically evalu-
ates statistical properties of the dataset. Similarly, statistical and perceptual
measures are used in Voyager [Won+16; Won+17] to automatically generate
insightful data charts. Furthermore, Voyager introduces faceted browsing to
quickly scan through the dataset. SEEDB [Var+15] evaluates the data columns
and returns the most interesting visualizations. The "interestingness" is based
on how large the data values deviate from a reference, e. g., a different subset
or a different dataset.

Another research direction is to suggest the best type of visualization for
datasets. AutoVis [WW08] is a data viewer that visualizes datasets appropri-
ately based on the content, e. g., missing data, outliers, miscodes or anomalies.
DeepEye [Luo+18] finds the best visualization based on supervised learning-
to-rank machine learning and expert rules for better visual perception. A
personalized visualization approach is VizRec [MVT16], which learns the
preferred visualization based on the user’s perception. SIDE [Lij+16] com-
putes interesting projections of the dataset by letting the users express their
interests or beliefs.

Research in the area of exploratory data analysis focuses on data in tabular
form, making these approaches not easily applicable to event logs. Although
event and case attributes can be transformed into a tabular form, methods
must still consider the underlying process. To the best of our knowledge, no
research combines methods of process mining with automatic exploratory
data analysis to improve process discovery and exploration.

7.2.2 Data Insights

As an extension to exploratory data analysis, interesting insights can be pro-
vided automatically instead of manually exploring data dimensions or visual
encodings. For instance, interesting patterns, such as exceptions [SAM98],
high-variation patterns [Var+15], trends, and outliers [Che+02], from multi-
dimensional data sets can be obtained using regression analysis [Che+02] or
visual aspects [CYR09].

Several insights recommendation systems such as Foresight, QuickInsights,
or DBExplorer have been proposed to provide useful insights automatically.
Foresight [Dem+17] and QuickInsights [Din+19] evaluate statistical proper-
ties from categorical and numeric attributes. DBExplorer [SCJ16] improves
the understanding of the data attribute characteristics and helps to query
hidden attributes using conditional attribute dependency views. The system
compares the attributes of the dataset and computes a view that groups
similar information, revealing attribute dependencies. Data insights can be
ranked by different aspects, such as dispersion, skew, outlier [Dem+17], or
interestingness [ST96; GH06; Var+15].
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A smart interactive drill-down approach is introduced in [JGP19], which
discovers and summarizes interesting data groups. It allows exploring in-
teresting parts of the dataset with fewer operations by suggesting a smart
data selection. Similarly, Milo et al. [MS18] propose a next analysis step
recommendation engine to improve data exploration. The next follow-up
analysis step is predicted based on prior action recordings.

Although lots of work in the literature focuses on data insights, these tech-
niques are not used in process mining to obtain interesting findings automat-
ically. Similar to exploratory data analysis techniques, approaches have not
been transferred and adapted to work with event logs. In addition, analysts
in process mining have different interests and analysis goals than in data
mining.

7.2.3 Interactive Browsing in Process Mining

There exists a range of academic (e. g., ProM, Apromore) and commercial
(e. g., Celonis, Fluxicon Disco, PAFnow, Minit) process mining tools that
support exploratory data analysis. These tools allow users to interactively
inspect, analyze, and visualize event logs. ProM [Ver+11] is an open source
academic process mining tool developed at the Eindhoven University of
Technology. It comprises of a set of basic plugins for process discovery, con-
formance checking, and enhancement, and the package repository with over
1000 different plugins. Similar to ProM, Apromore [Ros+11] is an advanced
process mining and modeling tool with rich capabilities.

Commercial tools like Fluxicon Disco (see Figure 7.1) or Minit1 simplify
process discovery by providing an easy to use user interface. Extensive visu-
alizations of the process help the analyst to understand the actual behavior.
Celonis or PAFnow Process Mining (see Figure 7.2) extend process discovery
capabilities by integrating Business Intelligence (BI). BI enables "structured
analytics, visualization, predictive analytics, and Machine Learning and streaming
capabilities" [Hop19] in a data-centric fashion. Combining process mining with
BI allows an in-depth and end-to-end analysis of a process. Analysts can
explore the execution of a process from a data- and process-centric perspec-
tive, allowing to quickly investigate, for example, potential bottlenecks or
compliance issues. Dashboards for PPIs allow analysts to quickly investigate
the performance of the process.

VIT-PLA [Yan+16] supports the analyst by visually summarizing traces and
generating data explanations from attributes using regression analysis auto-
matically. A different approach introduces linguistic summaries [DW17]. The
approach returns a list of statements that describe the event log, such as most
cases containing a specific activity sequence having a high total duration

1 Commercial tool for process discovery; available at: https://www.minit.io

https://www.minit.io
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Figure 7.1: User interface of Fluxicon Disco showing the discovered process model
of the BPI Challenge 2019 event log.

Figure 7.2: User interface of PAFnow Process Mining showing the process step
evaluation tab of the BPI Challenge 2019 event log.
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time. A process variant analysis using PPIs is introduced in [BSB17]. Here,
the idea is to identify the key differences between the variants and extract
their reasons. Similar work is introduced by Bolt et al. [BLA18] who annotate
transition systems to obtain the key differences between variants. For each
decision point, relevant case attributes and values are obtained using rule
mining to determine the next follow-up activity in a process model.

None of the existing process mining tools combine manual interactive data
exploration with automatic suggestions for interesting visualizations or in-
sights. Analysts must manually search for interesting patterns, trends, and
outliers. Related work that has been proposed in the data mining community
cannot be easily transferred to process mining because the data structure
and the analysis objectives are different. However, automatic suggestions in
the exploratory process analysis are necessary to be able to deal with the
increasing amount of data.

7.3 ProcessExplorer Approach

This section introduces the ProcessExplorer approach which is inspired by
the workflow of analysts. The design of the approach is the result of a user
study on the key requirements for building an interactive visual recommen-
dation system for process mining. Although this user study was conducted
before the approach was developed, it is presented in the evaluation section
of this chapter (see Section 7.5.1).

Our approach provides two types of recommendations to the analyst by
automatically inspecting the event log. The approach is divided into three
main steps:

1. In a first step, ProcessExplorer automatically extracts subsets of cases
with similar behavior using the multi-perspective trace clustering algo-
rithm introduced in Chapter 6 (Section 7.3.1).

2. For each identified subset, ProcessExplorer automatically obtains only
the most interesting PPIs by evaluating how much the subset deviates
from a given reference (Section 7.3.2).

3. Each recommendation is ranked using diversifying top-k ranking for
highlighting the most diversifying recommendations instead of showing
similar subsets or PPIs (Section 7.3.3).

In the following, each step is described in detail.

7.3.1 Discovery of Subset Recommendations

In the first step, ProcessExplorer splits the event log into cases of similar
behavior. Analog to the work of analysts who filter cases based on certain
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criteria, we are interested in cases that follow the same process behavior. These
subsets of cases build the basis for the subset recommendations suggested to
the user by ProcessExplorer.

In order to obtain these subsets, we utilize trace clustering. Specifically, Pro-
cessExplorer uses the multi-perspective trace clustering algorithm that was
introduced in Chapter 6. Our algorithm combines two process perspectives,
namely the control flow and data perspectives, to obtain subsets of cases
that contain similar process behavior. This mechanism is derived from the
work of analysts who typically combine multiple filters to obtain interesting
subsets. For example, it may be interesting to only investigate cases of a
specific department and that follow a specific activity order.

The multi-perspective trace clustering algorithm is parameter-free and auto-
matically adapts to the given event log. This is especially important because
ProcessExplorer is designed to automatically provide interesting insights
from event logs.

7.3.2 Discovery of Insight Recommendations

In the second step, PPIs with the most interesting insights are obtained for
each of the identified subset recommendations automatically. PPIs measure
quantitative and qualitative aspects of the process, such as duration times,
bottlenecks, and compliance violations, which are used by analysts to evaluate
a process (cf. Table 7.1). ProcessExplorer alleviates the repetitive manual
work for analysts caused by a large number of different PPIs that need to be
evaluated.

Similar to the workflow of analysts who investigate different PPIs by visually
preparing charts or descriptive results, ProcessExplorer computes all the
different PPIs for each of the subsets and then compares them with the
measurement of a reference. In our system, we allow analysts to select a
different subset of cases, the entire event log, or a different event log as the
reference. The basic idea of obtaining insight recommendations is derived
from SEEDB [Var+15]. SEEDB judges the interestingness of visualizations by
evaluating how large the deviation of the visualized data is from a reference.
The larger the deviation, the more interesting it is for the analyst. Although
there exist other characteristics that indicate interesting PPIs [GH06], analysts
are particularly interested in these large deviations. For example, a high
duration time for a subset of cases that differs from the average may violate
service level agreements.

Our approach allows to define PPIs for two different categories:

• Case-based Process Performance Indicators. A case-based PPI is computed
for each case within a subset individually. For example, the number
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PPI Description

Case Control-flow Directly/eventually followed by
Loops

Resource Number/distribution of resources
Data Case/event attribute value
Time Duration of events/trace
Function (Co-) Occurrence of events

Number of events

Subset Control-flow Start/End event distribution
Resource Attribute resources
Data Distribution of case/event attribute values

Table 7.1: Case- and subset-based process performance indicators (PPIs).

of activities, the total duration time, or the existence of an activity are
case-based PPIs.

Each case-based PPI is defined as a measurement function as follows:

f : C → R (7.1)

• Subset-based Process Performance Indicators. A subset-based PPI is an
aggregated measurement on subset level. For example, the distribution
of resources within a subset are subset-based PPIs.

Each subset-based PPI is defined as a measurement function over sets
of cases as follows:

f : C∗ → R (7.2)

We propose a set of basic PPIs which are depicted in Table 7.1. The proposed
set covers a wide range of basic characteristics that are typically measured
by analysts during the exploration. However, other more process-specific
PPIs may be required to evaluate the process performance. Our approach is
agnostic to the particular definition of the PPIs. Any PPI that can be described
as a function according to the two categories (see Equations 7.1 and 7.2) can
be used to extend the existing set of PPIs.

The interestingness of PPIs is obtained by performing statistical significance
tests to check if the measured values of the subset differ significantly from
the measured values of the reference set. In particular, the null hypothesis of
the statistical significance test reads: the two measurements are drawn from
the same distribution. If there exist some deviations between the investigated
subset and the reference set, the null hypothesis is rejected for those PPIs
that differ significantly. A significance level is set beforehand which is the
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accepted probability that the null hypothesis is true but wrongly rejected.
The p-value of a statistical significance test returns the probability that the
observed result occurs under the null hypothesis. Based on the p-value and
the significance level, ProcessExplorer decides to reject the null hypothesis
or not. If the null hypothesis can be rejected according to the significance
level, the corresponding PPI is considered to be interesting.

For each considered PPI, ProcessExplorer performs a statistical significance
test to decide its interestingness. Depending on the type of the PPI, the two-
sample Kolmogorov-Smirnov test [Mas51] is computed for case-based PPIs,
and the Jensen-Shannon divergence [Lin91] is computed for subset-based
PPIs. We use the two-sample Kolmogorov-Smirnov test because it is non-
parametric, it does not assume that the data is sampled from a normal distri-
bution, and it is also robust for various sample sizes. The Jensen-Shannon
divergence is used because it is symmetric and always bounded [Lin91].

A typical issue with statistical significance testing is that even small devia-
tions between the investigated sets of values can lead to a highly significant
result [SF12]. A better quantitative measure for obtaining the magnitude of
the deviation is Cohen’s effect size [Coh88; Coh92]. For two measurement
series x1, x2, Cohen’s d effect size is defined as follows:

d =
x̄1 − x̄2√
(s2

1 + s2
2)/2

with s2
i =

1
ni − 1

ni

∑
j=1

(xj,i − x̄i)
2 (7.3)

Cohen [Coh88] introduced comprehensive ranges to characterize the mag-
nitude of the deviation: 0.2 < d ≤ 0.5 indicates a small effect, 0.5 < d ≤ 0.8
indicates a medium effect, and values d > 0.8 a large effect. Using this scale,
analysts can immediately assess PPIs that are most deviating and have a high
impact on the process behavior. ProcessExplorer indicates the severity of
the deviation using a continuous color scale, from green (small effect; d < 0.5)
to red (large effect; d > 0.8), based on the ranges introduced by Cohen.

Some of the PPIs have a strong correlation between each other, and they are
likely equally significant. These correlations lead to redundant "insights",
which would unnecessarily increase the total number of insights providing
similar information. We simplify the list of identified insights by grouping
correlating PPIs together using clustering. As input for the clustering, we
use the Spearman correlation matrix which is computed for all relevant PPIs
pairwise. The elbow method [HKP11] is used to identify the optimal number
of clusters. The elbow method chooses the number of clusters by investigating
the additional information gain that an additional cluster would provide. If
the information gain drops, the number of clusters is chosen at this specific
point.
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7.3.3 Ranking of Recommendations

In the third step, ProcessExplorer ranks the generated subset and insight
recommendations based on their relevance, yielding a ranked top-k recom-
mendation list.

Each subset and insight recommendation is given a score that indicates its
corresponding relevance. The score for insight recommendations is calculated
as the product of effect size and case coverage within a subset. The coverage
is defined as the proportion of cases within a subset for which the insight
is applicable. Without considering the coverage of an insight, subset recom-
mendations with a small number of cases are ranked higher although other
subsets with more cases are more interesting. This intuition is also typically
applied by analysts who investigate process issues that occur more frequently
in the event log compared to issues that only occur once. However, if the
effect size is large enough, even subsets with a low number of cases are still
ranked higher. The score for the subset recommendations is the average score
of all its insight recommendations.

A known issue of ranked lists is that they tend to prioritize similar items
on top of the list. Furthermore, users tend to pay more attention to the top
of the list instead of exploring lower-ranked items, leading to a low selec-
tion diversity. This behavior is known as the filter bubble effect [Ngu+14].
ProcessExplorer avoids this issue and provides a diversifying list of recom-
mendations to the analyst by applying diversifying top-k ranking [QYC12]
to the recommendation list. Diversifying top-k ranking investigates the sim-
ilarity between the items and their score to return a ranked top-k list with
the most diversifying items on top of the list. We use the same trace and
case attribute similarity function as introduced for the multi-perspective trace
clustering (see Section 6.3.1.3) to obtain the similarity between the subset
recommendations. Based on the similarity between recommendations and
their score, the algorithm returns a top-k list of diversifying recommendations
which are used in ProcessExplorer.

7.4 ProcessExplorer System

The concepts of Section 7.3 are implemented into the ProcessExplorer

system to illustrate and evaluate its usefulness. In this section, we describe
the user interface and the architecture of the ProcessExplorer system.

7.4.1 User Interface

This section presents the graphical user interface of ProcessExplorer using
the BPI Challenge 2019 [Don19] event log as the use case scenario. The event
log contains recorded events from an information system that handles the
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Figure 7.3: User interface of ProcessExplorer showing the subset and insight rec-
ommendations, the process map of the selected subset, the stage view,
and the subset statistics.

procurement of goods in a multi-national company in the Netherlands. In
total, the event log contains 1, 595, 923 events with 42 activities and 251, 734
cases. This process involves 627 different resources, divided into 607 human
users and 20 automated systems, also called batch users. For each purchase
item, 16 different case attributes (e. g., item type, source, company, vendor)
are recorded.

Figure 7.3 shows the overall user interface of ProcessExplorer. In the fol-
lowing, each of the user interface components is described in detail.

7.4.1.1 Subset Recommendations

After an event log is loaded into ProcessExplorer, it computes the subset
recommendations. The list of the top 10 most relevant and interesting subset
recommendations is shown to the user, depicted in Figure 7.4. Each recom-
mendation is assigned a score that indicates its relevance and interestingness
for the user. The list is sorted by the score and filtered using top-k diversify-
ing ranking. The user can manually create new recommendations or modify
existing recommendations by adding additional filters:

• Variant filter: The variant filter allows the user to select a specific process
variant, i. e., all cases that follow a specific order of activities.

• Start and end activity filter: The start and end activity filter allow the user
to select all cases that start or end with a specific activity.
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Figure 7.4: Subset recommendations of the BPI Challenge 2019 event log.

• Happy path filter: The happy path filter allows the user to select all cases
that follow the most occurring process variant.

Subset recommendations can be accepted, which filters the event log accord-
ing to the subset recommendation, or declined, which removes it from the
list.

7.4.1.2 Subset Statistics

After the user selected a subset recommendation, the subset statistics com-
ponent shows some basic statistics about the cases selected by this recom-
mendation. The subset statistics component is shown in Figure 7.5. It shows
the activity distribution, the variant distribution, the number of selected
traces, and the number of selected transitions. For the example event log
investigated, the first recommendation selects 6 out of 11 events and covers
1956 event occurrences.

7.4.1.3 Insight Recommendations

The ranked list of insight recommendations of an accepted subset recom-
mendation is depicted in Figure 7.6. The visual presentation of an insight
recommendation depends on the type of the insight. Trace-based PPIs are
presented as a textual description that describes the deviation identified.
Cluster-based PPIs are visually presented as a bar chart that shows the dis-
tribution of values. The subset recommendation considered in Figure 7.6
contains six insight recommendations. We highlight two of them:

• The first insight recommendation indicates a higher occurrence of the
transition "Record Invoice Receipt" and "Remove Payment Block". In
the subset, 59.1% of the cases follow this transition, compared to 14.6%
in the event log overall.
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Figure 7.5: Statistics of a selected subset recommendation of the BPI Challenge 2019

event log.

• The second insight recommendation shows the distribution of resources
for the activity "Receive Order Confirmation". The distribution visual-
izes that "user_029" executed this activity in most cases.

7.4.1.4 Process Map

Similar to other process mining tools, the process map visually shows the
relationships between the activities observed. It allows analysts to inspect the
directly-follows relation of activities. The user can navigate through the map,
hide activities and transitions according to the relative occurrence, and see
the number of cases that followed a specific transition. Figure 7.3 shows the
process map after a suggested subset recommendation was accepted by the
user.

7.4.1.5 Stage View

ProcessExplorer introduces stage views to simplify the navigation between
the subset recommendations. Each time the user accepts a subset recom-
mendation, a new stage is generated that stores the selected cases and the
computed insight recommendations. Stages are organized as a hierarchical
structure such that each refinement of a selection results in a new hierarchy
level. For each stage, subset and insight recommendations are computed, so
that recommendations can be successively refined. Figure 7.8 shows the stage
view navigation after accepting three subset recommendations.
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Figure 7.6: Insight recommendations of a selected subset recommendation of the BPI
Challenge 2019 event log.
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Figure 7.7: Process map of ProcessExplorer showing a subset recommendation of
the BPI Challenge 2019 event log.

Figure 7.8: Stage view navigation of ProcessExplorer.
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7.4.2 Architecture

In this section, we present the details of the reference architecture used to
evaluate the ProcessExplorer. Figure 7.9 shows the architectural overview
of the ProcessExplorer system.

7.4.2.1 Management

The recommendation framework of the ProcessExplorer system consists
of three main management components which handle the event log data
(EventLogManager), the recommendations (RecommendationManager), and the
stage view navigation (StageManager). The components are designed to be
extensible such that different event log formats, a different stage view man-
agement, and additional subset and insight recommendation engines can be
integrated in the future.

ProcessExplorer supports the IEEE XES [Ver+11] event log format and
uses the OpenXES implementation with the XESLite extension [Man16]
(InMemoryStore) to load event logs. Event logs are stored in the EventLogData
(see Figure 7.9 middle top) object in the form of an XLog object, which refers
to the standard implementation of OpenXES. EventLogData additionally stores
the basic statistics (i. e., the number of cases, the number of activities, the
activity distribution, the number of variants, the variant distribution, the
number of transitions, and the transition distribution) of the log that are
shown to the user during the exploration.

The navigation in ProcessExplorer is organized in a hierarchical structure,
the stage views. For managing the stage views, the StageManager (see Fig-
ure 7.9 center) stores a history of all stages visited. Each stage refers to a
specific event log and can contain other stages that refine the case selection.
ProcessExplorer always has an active stage that reflects the currently se-
lected cases and the recommendations shown to the user. If the user decides
to change the active stage, the StageManager retrieves the subset and insight
recommendations from the RecommendationManager.

7.4.2.2 Recommendations

The recommendations are organized and managed by the Recommendation-
Manager (see Figure 7.9 middle bottom). A recommendation consists of a case
selection, i. e., the cases that should be selected by the recommendation, and
the insights, i. e., the interesting findings for the selection. Each time a recom-
mendation is requested, ProcessExplorer checks if the recommendations
for this specific set of cases are already computed and returns the cached
result, otherwise, it calls the RecommendationEngine. Recommendations are
stored in the Recommendation object, which specifies the case selection using
filters, and the insight recommendations.
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Figure 7.9: Architectural overview of the ProcessExplorer system [See+19b].
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In the prototype implementation of ProcessExplorer, the multi-perspective
trace clustering algorithm (see Chapter 6) is used for the subset recom-
mendations, and statistical significance testing is used to obtain the insight
recommendations. Due to the extensible architecture, other implementations
for the recommendation engine can also be implemented.

7.4.2.3 Visualizations

Separate components are responsible for visualizing the event log, the log
statistics, and the recommendations (see Figure 7.9 right grey-shaded box).
The StageViewer is responsible for visualizing the active stage. In Process-
Explorer the process is visualized as a process map, implemented by the
ProcessMap object. The StageInfoViewer shows the basic statistics of the active
stage. The StageInsightsViewer is responsible for visualizing the list of insight
recommendations of the active stage. Insights recommendations can be either
visualized by a bar chart or by a textual representation.

The list of subset recommendations is visualized by the RecommendationS-
elector. If the user decides to select a specific subset recommendation, the
RecommendationSelector reports the selected recommendation to the Recommen-
dationManager. The RecommendationSelector also allows the user to customize
recommendations. These customizations are reported back the Recommenda-
tionManager. Subset recommendations specify which cases are selected, hence
basic statistics can be shown to the user. These statistics are visualized by the
RecommendationInfoViewer.

All visualization components are separated from the underlying implemen-
tation of the recommendations such that other types of visualizations can be
explored without changing the actual computation of the recommendations.

7.5 Evaluation

This section presents the evaluation results of two user studies regarding
the usefulness of analytic guidance during the exploration of event logs.
The first study (see Section 7.5.1) investigates the key requirements to build
an interactive visual recommendation system for process mining using an
early prototype. It is noteworthy that the first user study was conducted
before the ProcessExplorer approach was designed. The second study (see
Section 7.5.2) evaluates the usefulness of the ProcessExplorer system.

7.5.1 User Study: Identify Key Requirements for Analytic Guidance

Since analyzing event logs using process mining techniques is largely a
manual exploratory task to date, this within-subject design study investigates
how systematic analytic guidance can be provided to the user. The goal of
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Figure 7.10: User interface of the early prototype of ProcessExplorer. Section A
shows the process map and section B shows the activity and transition
selection panel.

this user study is to evaluate which kind of guidance is useful for the analysis
of event logs using process mining techniques. It specifically investigates the
analytic guidance of process discovery and analysis techniques to identify
potential process issues.

7.5.1.1 Setup

An early prototype (see Figure 7.10) of ProcessExplorer was shown to five
process mining consultants. Study participants were familiar with existing
state-of-the-art tools such as Fluxicon Disco, PAFnow Process Mining (all
participants), QPR ProcessAnalyzer (4 participants), Celonis, and ProM (2
participants each).

The prototype contained three modes which refer to the degree of analytic
guidance:

no guidance . The first mode contains no guidance at all but manual
filtering such as the activity, transition, cases, and variant filter. The tool
offers the basic process discovery features that are commonly used by
users.

stage views and markings . The second mode introduces the stage view
which allows the user to refine the filter selection stepwise. The user can
mark certain activities and transitions (see blue highlighted activities
in Figure 7.10) such that these markings can be hidden or shown only.
This feature allows users to hide already investigated aspects.



7.5 evaluation 177

semi-automatic grouping . The third mode further introduces the group-
ing feature which semi-automatically provides the user with certain
sets of cases. Markings introduced in mode two are now automatically
added by selecting a group.

In the user study, we used the publicly available BPI Challenge 2017 [Don17]
event log. First, all participants were asked to get familiar with each of the
evaluated guidance modes, beginning with no guidance and ending with the
semi-automatic grouping. The participants were requested to investigate and
analyze the event log with the goal of obtaining valuable process knowledge.
After participants explored the event log with a specific mode, they were
asked to fill out a post-stage questionnaire to rate their explicit experience
and preference with the interface and guidance. Finally, the participants had
to fill out the User Experience Questionnaire (UEQ) [LHS08] which consists
of 5 scales: perspicuity, efficiency, dependability (pragmatic quality), stimulation,
and novelty (hedonic quality). For each of the scale, the UEQ returns a score
from −3 (horribly bad) to +3 (extremely good).

7.5.1.2 Results

The responses of the post-stage questionnaire indicate that the stage view
with the ability to navigate between different subsets of cases is beneficial
and useful. The navigation paradigm was positively rated for the exploration
of large event logs. However, two participants had the feeling that they took
longer to analyze the given event log due to the increased navigation choices.
Changing the selection of cases required the users to switch to a different
view which was rated negatively.

The group feature which provided the ability to select a set of cases was
rated positively. At the same time, the information displayed to the user
was not sufficient to decide which group to select. Participants commented
that providing some basic statistical information or a preview of the cases in
the subset would increase the usefulness of the grouping. One participant
argued that the top-down approach makes it difficult to obtain the really
important parts of the process. For this reason, a recommendation feature
that suggests interesting subsets of cases was proposed. These subsets would
then be inspected one-by-one.

Figure 7.11 shows the results of the UEQ for the first and the second user
study. According to the results of the first user study, the aspects stimulation
and novelty got the highest average scores with 1.2 and 1.1 which refers
to a positive evaluation. Attractiveness, efficiency, and dependability got a
neutral score of 0.67, 0.6 and 0.15. The aspect perspicuity got a negative score
value of −0.55 but in the interval, which is considered as neutral range. The
results of the UEQ do not provide conclusive evidence that using the early
prototype improves the analysis experience. Detailed comments from the
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Figure 7.11: Results of the UEQ for the requirements study and for the final proto-
type. Range from -3 (horribly bad) to 3 (extremely good).

study participants indicate a steep learning curve of the used prototype,
indicating that more guidance and a better user interface is required. Still, the
idea of providing a better-guided analysis experience was rated innovative
and promising.

7.5.2 User Study: Evaluation of Usefulness

This section presents the results of the user study performed to evaluate
the usefulness of the ProcessExplorer system and the underlying con-
cepts. The focus of this study is to asses how useful the subset and insight
recommendations are for the exploration of large event logs.

7.5.2.1 Setup

In a user study workshop, ProcessExplorer was shown to six process mining
experts who differ from those of the first user study. In total, the workshop
took 60 minutes and was divided into two parts. The first part introduced
the ProcessExplorer system to the study participants, showing the basic
implemented guidance and recommendation features. For the workshop,
an event log containing activities of a procurement handling process was
used. There was only little to no further explanation required because the
underlying process was well known. In the second part, participants were
able to explore all the guidance features, i. e., subset recommendations, insight
recommendations, and ranking of recommendations, of the ProcessExplorer

approach on their own. Finally, the participants were asked to express their
explicit opinion of the system.

The usefulness of ProcessExplorer was evaluated by applying the Tech-
nology Acceptance Model (TAM) [Dav85]. The TAM assess the potential
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Table 7.2: The questions and results of the Technology Acceptance Model (TAM)
usefulness estimation.
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acceptance of a technology by end users using a quantitative evaluation in
four different usefulness aspects:

(A) Job Effectiveness

(B) Productivity

(C) Importance of the system to the user’s job

(D) Control over Job

The questionnaire consists of 10 statements (see Table 7.2) each assigned
to one of the usefulness aspects. Study participants were asked to rate the
statements on a scale of -3 "strongly disagree" to +3 "strongly agree".

Although the TAM is also capable of estimating the ease of use of a technol-
ogy, we did not evaluate this aspect. Due to the limited time study participants
spend with the system, results would have been misleading because getting
familiar with the unknown tool may take more time. It is also a particular
challenge to compete with existing process mining tools, which contain a
large number of features expected by analysts. In this study, we were more
interested in the usefulness of the concepts and not primarily on the ease of
use of our prototype. Ideally, concepts of ProcessExplorer are integrated
and evaluated in an existing process mining tool.

The user experience of the ProcessExplorer system was compared with the
early prototype. Additionally, the UEQ was also be evaluated.
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7.5.2.2 Technology Acceptance Model Results

According to the TAM, ProcessExplorer received an overall positive mean
usefulness score of 2.8 (σ = 0.40). Specifically, each of the usefulness aspects
received a positive mean score. According to the assessment of participants,
the system improved the quality of the work they do (2.6; σ = 0.49) and
enhances the effectiveness of their job (2.40; σ = 0.80). With respect to
job improvement (A) the participants scored the system with 1.17 (σ =

2.11) which indicates that not all participants agreed on this statement. This
result can be explained by the short evaluation time of the system, which
may have prevented participants from becoming fully familiar with the
system. The results of the job effectiveness aspect show that ProcessExplorer

helps analysts during their analysis work of event logs. Especially the quick
exploration of large event logs has a positive effect on the job effectiveness.

With respect to the productivity aspect (B), the study participants agreed
that ProcessExplorer enables them to accomplish their tasks more quickly
(2.40; σ = 0.8). They also agreed that the system allows the participants to
accomplish more work than would otherwise be possible (1.80; σ = 1.94),
and increases their productivity (1.67; σ = 2.21). Due to the automatically
generated suggestions, users were able to explore interesting aspects more
quickly than with conventional systems. Study participants also agreed that
ProcessExplorer makes it easier for process analysts to do their job (2.60;
σ = 0.49), and some of them agreed that it supports critical aspects in their
job (1.33; σ = 2.21). The lower level of agreement to support critical aspects
in their job may be because the system has not been told on which analytical
objective it should focus. The statement that ProcessExplorer gives greater
control over the work got a high agreement (2.2; σ = 0.75).

7.5.2.3 User Experience Questionnaire Results

The results of the UEQ show that all five scales improved compared to
the requirements user study. The aspects "Attractiveness", "Novelty", and
"Stimulation" were voted clearly the above average in the second study.
These results confirm that participants found the significantly different user
interface better than the one of the previous early prototype.

7.5.2.4 Free-text Comments

The questionnaire also allowed participants to give individual feedback,
which is explained in this section.

On the one hand, most of the participants liked the general idea of getting
analysis assistance during their work with the system, which improved their
first exploration of an unknown dataset. The idea of automatically generating
subsets of cases and presenting them as recommendations was described as
"very innovative" (P1) and "super interesting" (P4). Likewise, one participant
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commented, that ProcessExplorer is "a very useful tool for gaining quick
control over unknown data" (P5).

On the other hand, the study also revealed some weak aspects of Pro-
cessExplorer. One participant (P6) was not convinced about the insight
recommendation and argued that these were not useful for his work. In our
post analysis of the workshop, we investigated the real-life event log provided
by the Business Process Intelligence Challenge (BPIC) 2019. Here, we found
several insights such as rework activities and high duration times, that were
also found by the participants of the challenge. However, it may be necessary
to conduct more research in this context to get a better understanding of
which insights are relevant, and how they should be presented to the user.
Still, the subset recommendation was seen "as a real added value to process
mining" (P6). Two other participants found that the user interface (P2, P4)
was too overloaded with all the information shown at the same time.

7.6 Discussion and Limitations

This chapter presented ProcessExplorer, an interactive visual recommen-
dation system for process mining, to enable fast data exploration. However,
there are some limitations and research directions for future work.

7.6.1 Recommendations

The current approach considers two types of recommendations in the area of
process discovery. Potential future work could investigate activity recommen-
dations as well as suggesting different types of visualizations. Also, other
process mining areas such as conformance checking and process enhancement
could benefit from providing certain guidance to the analyst.

The user study with experts showed that the insight recommendations are
not always of high value because they are independently computed without
respecting the analysis goal. Furthermore, the current prototypical imple-
mentation of ProcessExplorer shows all the detailed information about
the subset and insight recommendations at the same time. It is therefore
interesting to further investigate other user interface concepts.

7.6.2 Usefulness

The evaluation of ProcessExplorer was limited to the usefulness aspect of
the system. Although the results have shown significant usefulness of the
underlying concepts, it is still unclear how the recommendations specifically
improve the quality of the analysis. We also did not investigate potential
negative aspects of the approach, such as the influence of recommendations
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on analysts to only inspect the suggested process characteristics. Furthermore,
the evaluation did not investigate the actual time improvement during the
analysis because our system was only implemented as a prototype with
limited capabilities. Integrating the presented approach into an enterprise
process mining tool is necessary for a fair comparison.

7.6.3 Runtime Performance

The runtime performance of finding interesting insight recommendations
highly depends on the PPIs considered as well as on the number of in-
vestigated cases. During the user studies, the evaluation of the statistical
significance tests took the majority of the runtime; this part needs further
improvement and optimization. Sampling strategies, as well as data structure
efficiency, are promising topics of investigation.

7.7 Conclusion

This chapter introduced ProcessExplorer, an interactive visual recommen-
dation system for process mining which automatically provides the analyst
with subset and insight recommendations ranked by interestingness. In sum-
mary, the main contributions of this chapter are:

1. A novel approach to automatically compute recommendations that
guide process analysts during the analysis of large event logs. Specifi-
cally, this chapter introduced several innovative techniques:

a) A method to automatically obtain subset recommendations from
event logs using multi-perspective trace clustering, considering the
control flow and data perspective of cases.

b) A mechanism, based on statistical significance testing, that iden-
tifies the most deviating PPIs that are relevant and insightful for
the analyst to explore.

c) A diversifying top-k ranking approach for subset and insight
recommendations to generate a ranked list of diversifying recom-
mendations.

2. An interactive visual exploration system that enhances analytic support
to quickly explore large and complex event logs.

ProcessExplorer enhances existing process mining tools by suggesting
subset and insight recommendations to support the analyst through the
exploration of large and complex event logs. The basis for ProcessExplorer

is the process knowledge artifact framework, introduced in Chapter 3 and
illustrated in Figure 7.13. Subset recommendations are obtained by the multi-
perspective trace clustering that was introduced in Chapter 6 and allows
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Figure 7.13: Overview of the chapter and contributions.

analysts to quickly scan through the most interesting process behavior pat-
terns. Insight recommendations computed from a predefined set of PPIs
are filtered by relevance using statistical significance analysis and sorted by
interestingness using the effect size. As a result, ProcessExplorer provides
interactive exploration of event logs combined with automatically generated
recommendations to guide analysts towards interesting findings. In the fol-
lowing chapter, we introduce a process improvement algorithm that analysts
can configure based on the insights obtained by ProcessExplorer.



8
Process Improvement

The methods presented in previous chapters analyze business processes by
inspecting recorded event logs, but they do not necessarily provide process
improvements. This chapter introduces a process model improvement algo-
rithm using motif-based graph adaptation. The underlying assumption is
that there exists a correlation between fundamental metrics of a process map
and the relative occurrence of motifs. These correlations were observed in
several studies in network theory. In this chapter, the same idea of adapting
network topologies is transferred to the context of business processes. The
process map is automatically adapted according to a given improvement goal
using a motif target signature while retaining important process constraints.
The algorithm provides suggestions for redesigning the business process by
applying the Local Motif-based Adaptation (LoMbA) algorithm. It automati-
cally adapts the process map by adding, removing, or moving transitions to
approximate a target signature.

This chapter is organized as follows: First, in Section 8.1 a motivating intro-
duction to process model improvement via motif-based graph adaptation is
given. Next, related work in the field of process optimization is introduced
in Section 8.2. Section 8.3 presents a method to obtain motif target signa-
tures for specific process improvement goals. Then, Section 8.4 presents the
motif-based graph adaptation algorithm that improves process maps with-
out affecting the process goal. In Section 8.5 the results of the experimental
evaluation are presented. The chapter concludes with the limitations of the
algorithm, and future work (Section 8.6).

Publication: This chapter is based on the following publication:

Alexander Seeliger, Michael Stein, and Max Mühlhäuser. “Can We Find
Better Process Models? Process Model Improvement Using Motif-Based
Graph Adaptation.” In: Business Process Management Workshops. Cham:
Springer International Publishing, 2018, pp. 230–242. doi: 10.1007/978-
3-319-74030-0_17.

Contribution Statement: I led the idea generation, implementation of
the prototypes and performed the data evaluation. The student Alex
Fedjakin implemented the prototype for the evaluation. Michael Stein
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Figure 8.1: Overview of all directed motifs with 3 nodes

and Max Mühlhäuser supported the conceptual design and contributed
to the writing process.

8.1 Introduction and Motivation

The success of organizations highly depends on the efficiency, effectiveness,
and reliability of business processes. Many organizations invest a lot of effort
into the analysis and optimization of business processes to be successful in
the competitive market. The previous chapter in Part iii investigated process
analysis techniques that obtain valuable insights into how business processes
are actually executed. A drawback of these methods is that they do not
necessarily provide potential improvement advice [ALS16]. The automatic
improvement of process models is a highly complex and challenging problem
because systems must provide better alternatives for existing process models
only using extracted knowledge from event logs [Aal13].

Two main goals must be fulfilled to improve business process models (see
Figure 8.2):

improvement goal . On the one hand, the desired and intended improve-
ment goal must be achieved. For instance, from an organization point
of view it may be desired to improve the overall throughput time of the
procurement handling process to save money.

process goal . On the other hand, the process must still be executable
and deliver the desired outcome after the suggested improvements
are applied to the process model (see Section 2.2.3). For example, the
procurement handling process has the goal that ordered goods are
received and paid.

Only if both goals are fulfilled, suggested process improvements are valuable
for organizations.

This chapter introduces a process model improvement approach that suggests
adjustment recommendations for existing process models based on defined
improvement goals. The proposed approach is inspired by the systematic
adaptation of communication network topologies based on motifs [Kru+10;
Kru+11; Ste+17]. A motif is a small graph pattern that is the core building
block of complex graphs [Mil+02] (see Figure 8.1). The frequency distribution
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Figure 8.2: Overview of the business process motif-based graph adaptation approach
[SSM18].

of motifs, also called motif signature, has been investigated in several stud-
ies [Mil+02; SS10] for different types of graphs. These studies consistently
observed a strong correlation between the motif signature and important
structural metrics of the graph. This observation is utilized in communication
network approaches to adapt their topology [Kru+10; Kru+11; Ste+17] as
follows: First, a target signature is computed from a set of network topologies
that perform well for the investigated metrics. Second, a badly performing
network topology is adapted such that the modified topology approximates
the given target signature. We transfer the same idea to process model opti-
mization to adapt business process models.

The input of the process model optimization approach is a process map, an
event log, and the improvement goal as a motif target signature. A motif
signature of a process map represents the core structure of the process.
Consequently, it is also an indicator of process simplicity and variability.
Similar to the optimization of network topologies, an appropriate motif target
signature is defined that is used to adapt non-optimized process models. A
process map can be modified by adding or removing transitions between
activities. If we modify the process map such that its structure approximates
the target signature, the resulting process map has the same core structural
properties as the process maps from which the target signature were obtained.
The LoMbA algorithm [Ste+17] performs the systematic adaptation of the
process map by modifying it according to the target signature. Furthermore,
LoMbA ensures that after the adaptation the process goal is still fulfilled
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using constraints obtained from an event log or manually from process
experts.

8.2 Related Work

Business process optimization is largely a manual task for which a wide
range of best practices and guidelines have been established [VTM08; KR13].
Workshops with external consultants are often conducted to brainstorm about
process improvements [MRO09]. An overview and quantitative evaluation
of process redesign practices are compared in [RL05; Van+15]. As a result, a
set of process redesign techniques is proposed that is structured as a pattern
catalog to redesign processes. During the design phase of a process model,
a wide range of modeling tools exist that integrate such catalogs helping
organizations to apply best practices directly to the designed model [GK02].
Only little work is published from a technical and improvement perspective
in the context of process mining [VTM08; ALS16]. In the following, we present
related work on (semi-)automatic process model improvement techniques.

An optimization approach that combines reference models and process min-
ing is introduced by Gerke et al. [GT09]. The basic idea is to use the IT
Infrastructure Library (ITIL) – which consists of a collection of best prac-
tices for designing, controlling and improving IT services – and to compare
them with the actual process model. Conformance checking identifies the
deviations between the reference and the obtained process model to reveal
potential improvements.

Niedermann et al. [NRM10b; Nie15] introduce a semi-automatic process
optimization platform supporting the process design, execution, and anal-
ysis based on historic event logs. Best practices combined with analytical
components are stored in a pattern catalog [NRM10a]. Each pattern consists
of a formal detection description and an application part, describing the
transformation logic to optimize the desired process property. The system
automatically matches appropriate patterns and lets the analyst decide which
pattern to apply.

Another approach for optimizing the performance of process models is
introduced by Yilmaz et al. [YK15], who use cross-organizational process
mining to provide improvement suggestions. Process Performance Indicators
(PPIs) and process models are computed from different event logs originating
from organizations. The differences among the organizations are identified
and analyzed to suggest improvements that can be applied to the other
organization.
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8.3 Finding Appropriate Target Signature

In this section, we discuss how a suitable target motif signature can be ob-
tained to adapt a process map according to a specific improvement goal. The
target motif signature is a projection of the desired structural characteristics
of the process map, interpreted as a graph. Following the LoMbA approach
introduced, it fundamentally influences which modifications are applied to a
process map and how the resulting process map should look.

First, we introduce the definitions of a motif and a motif signature, before
investigating the motif signatures of real-life process maps:

Definition 8.1 (Motifs [SSM18]). A motif is a small subgraph pattern; most
practically relevant motifs contain 3 or 4 nodes. Let M be the finite set of
motifs of the same number of nodes.

Figure 8.1 shows all 13 different directed motifs with 3 unlabeled nodes. The
frequency of how often the different motifs are observed in a process map is
called motif signature, and defined as follows:

Definition 8.2 (Motif Signature [SSM18]). Let P be the process map, accord-
ing to Definition 2.9. The frequency of M in P is the motif signature s(P)
which is a real-valued vector of relative frequencies of motif Mi with i being
the index of the motif.

To get a better understanding of motif signatures for process maps, we
investigate five different event logs and examine the signatures for three-node
directed motifs. For each event log, a process model is discovered using the
Flexible Heuristics Miner (FHM) (see Section 2.4.2) with the standard and
"noise-free" setting. In total, ten process models were investigated.

The results of the investigations for the standard heuristic indicate that motifs
M1 to M3 are the most dominant motifs in process maps. The motifs M4 to
M13 are less present. This distribution of the motifs is not surprising because
process maps consist of start and end activities, and transitions between
activities link them together. The high frequency of motifs M1 and M2 can be
explained by the fact that both motifs refer to the split and join constructs of
AND and OR gates. Motif M3 refers to a simple forward transition. Motifs
M4 to M6 can be observed when an activity of the process map is executed
again after another activity was executed. If the process map contains cycles,
motifs M7 and M8 may occur. The motifs M9 to M13 are combinations of
other motifs and are not likely to occur frequently in a process map. The
detailed distribution of motifs is depicted in Figure 8.3.
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Figure 8.3: 3 node motif frequency over the investigated process models with two
different heuristic miner settings.
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Figure 8.4: Pearson correlations between motif and graph property. Correlations
> 0.55 are significant with p < 0.05; correlations > 0.6 with p < 0.01.

The noise-free setting shows a slightly different result. The results indicate
a higher occurrence of motifs M4 to M6 and a lower frequency of motifs
M1 to M3. This can be explained by the fact that the FHM in the noise-free
setting returns process models with less frequent behaviors. The comparison
between the noise-free and the standard setting is depicted in Figure 8.3.

The investigations also show that there exist correlations between motifs
and certain process map characteristics. The number of edges, the number
of activities, the graph density, and the clustering coefficient were used
as characteristic measures. Results of the correlation analysis indicate the
following correlations:

• M3 has a significant1 negative correlation with the number of edges,
the number of nodes, the graph density, and the clustering coefficient.

1 Analysis of variance: p < 0.01 for correlations > 0.74, and p < 0.05 for correlations > 0.55
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• M6, M9, M10, M12, and M13 have a significant positive correlation with
the number of edges.

• M6, M10, M12, and M13 have a significant positive correlation with the
graph density.

• M6, M9, M10, M12, and M13 have a significant positive correlation with
the clustering coefficient.

The detailed results of the correlation analysis are depicted in Figure 8.4.

Based on the results of the investigations, target motif signatures can be
obtained. One option to obtain a target motif signature is to take the results
of the analyzed event logs and make use of the correlations identified.
For example, if the reduction of complexity of a process is chosen as the
improvement goal, the frequency of the motifs with a positive correlation
to the graph density should be decreased. Another option to obtain a target
motif signature is to take the motif signature of an existing process map that
is already less complex.

In the remainder of this chapter we are interested in improving a process map
with respect to model simplicity measure (see Section 2.4.3.4), i. e., the process
map should be simplified regarding the number of edges, the graph density,
and the cluster coefficient. However, note that the introduced approach is not
limited to this specific process improvement goal.

8.4 Motif-based Process Adaptation

This section introduces the process improvement approach. Given a target
motif signature and an event log, the process map is adapted such that the
resulting process map approximates the target signature while retaining
important process constraints. The algorithm is composed of two parts:

1. The LoMbA algorithm adapts the process map and provides process
improvement suggestions that fulfill the process constraints given to
the algorithm (Section 8.4.1).

2. We propose the use of DECLARE models that describe the process
constraints required to successfully fulfill the process goal of the pro-
cess. DECLARE models can be either defined manually or obtained
automatically from an event log (Section 8.4.2).

In the following, each step is described in detail.

8.4.1 Process Map Adaptation

This section describes the motif-based graph adaptation algorithm. The
algorithm adapts the process map such that it approximates the target motif
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signature and fulfills a specified set of process constraints. Let P = (N∗, E∗)
be the process map and t be the target signature. Furthermore, let f be the
process constraint function that checks if the process map fulfills the process
constraints. The process constraint function is defined as follows:

Definition 8.3 (Process Constraint Function). Let f : P→ {true, f alse} be a
function that receives a process map P and returns a boolean value. f returns
true if the process map P fulfills all specified process constraints, otherwise
false.

The motif-based graph adaptation algorithm evaluates the process constraint
function (for details see Section 8.4.2) to check whether the application of a
set of possible process map modifications still leads to a valid execution of the
process. Specifically, the process constraint function validates the fulfillment
of the process goal by the given process map.

For the actual adaptation of the process map, a modified version of the
LoMbA algorithm [Ste+17] is used. It is an iterative algorithm that periodi-
cally traverses all activities n ∈ N∗ of the process map. The algorithm consists
of two steps, executed in a loop until the target signature distance is smaller
than a defined threshold or a maximum number of iterations is reached:

1. Iterator Order. The algorithm searches for a reasonable set of possible
graph operations that can be applied to the process map.

2. Operation Selection. It selects a graph operation that fulfills the process
constraint function and checks if the operation adapts P towards the
target signature.

8.4.1.1 Iterator Order

In the first step, LoMbA searches for possible graph modification operations
that can be applied to the process map. The algorithm considers three graph
adaptation operations: the Remove-edge, Add-edge, and Move-edge operations.
Even a small process map leads to a large number of possible graph adap-
tation operations. Therefore, LoMbA only considers a subset of all graph
operations. The algorithm uses the edge operator indicator (EOI) heuristic to
reduce the operator search space. This heuristic computes which graph oper-
ations are most beneficial to approximate P towards the target signature. It is
defined as follows:

EOI = ∑(ti − si(P)) · |E(Mi)|
l

(8.1)

where ti is the relative frequency of motif Mi in the target signature, si(P)
the relative frequency of motif Mi in the process map P, |E(Mi)| the number
of edges in motif Mi, and l the number of inspected motifs. The EOI is used
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to compare the ratio of edges in the target signature with the ratio of edges
in the current process map signature:

• If EOI > 0 then the target signature contains more edges than the
current process map signature, indicating that the Add-edge operator is
likely more appropriate to approximate the target signature.

• If EOI < 0 then the target signature contains fewer edges than the
current process map signature, indicating that the Remove-edge operator
is likely more appropriate.

• If |EOI| ≤ eoi_threshold, then the ratio of edges between the target and
the current signature is too small to promise significant progress in
case ofAdd − edge or Remove − edge. Consequently, the Move − edge
operator is likely to be more appropriate.

Based on the EOI value, a set of ranked operations is considered for the
adaptation step.

8.4.1.2 Operation Selection

In the second step, LoMbA selects an appropriate graph operation of the
generated operator iterator for n ∈ N∗ and generates a candidate process
map P′ by applying the selected operation. The candidate process map is
checked to determine whether the process constraint function returns true
or not. If P′ does not fulfill all process constraints, the selected operation is
discarded. Otherwise, the algorithm calculates the motif signature distance
between s(P′) and t. The motif signature distance is defined as follows:

Definition 8.4 (Motif Signature Distance). The distance(x, y) between two
motif signatures x and y is the Euclidean distance between x and y.

After the algorithm generated the candidate process map P′, it checks if
the signature distance of the candidate process map is closer to the target
signature t than the current process map. The modification operation is
accepted and P′ is the new current process map. If the operation was accepted,
the current operator iterator may contain further appropriate modifications.
In this case, the algorithm continues to apply as many other operations of the
iterator as it already applied to P. However, if no operation was found that
fulfills the process constraints, a different operator iterator is generated by
expanding the search space. As opposed to the original LoMbA algorithm, the
algorithm operates on the entire graphs, not on subgraphs, because process
maps contain fewer nodes and edges than network topologies.

The algorithm continues to adapt the process map until the maximum num-
ber of iterations is reached. The experimental results show that a maximum
number of five iterations is sufficient to appropriately approximate the tar-
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Algorithm 6: Motif-based Process Graph Adaptation Algorithm
input : P = (N∗, E∗), t, eoiThreshold

1 its← {Remove-edge (P, n), Add-edge (P, n), Move-edge (P, n)}

2 EOI← GetEdgeIndicator (P, t)
3 itOrder ← GetIteratorOrder (its, EOI, eoiThreshold)

4 for it: itOrder do
5 foundValid← false, maxSteps← ∞, doneSteps← 0

6 currentDistance← Distance (s(P), t)
7 while op← it.next() and doneSteps < maxSteps do
8 doneSteps← doneSteps + 1

9 P′ ← CreateCandidate (P, op)
10 if f(P′) then
11 foundValid← true
12 if Distance (s(P′), t) < currentDistance then
13 P← P′

14 if maxSteps = ∞ then
15 maxSteps← doneSteps

16 end
17 doneSteps← 0

18 currentDistance← Distance (s(P), t)
19 end
20 end
21 end
22 if foundValid then break;
23 end
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DECLARE rule LTL Expression

responded existence(A, B) �A⇒ �B
co-existence(A, B) �A⇔ �B
response(A, B) 2(A⇒ �B)
precedence(A, B) (¬B t A) ∨2(¬B)
succession(A, B) response(A, B) ∧ precedence(A, B)
alternate response(A, B) 2(A⇒©(¬A t B))
alternate precedence(A, B) precedence(A, B) ∧2(B⇒©(precedence(A, B)))
alternate succession(A, B) alternate response(A, B) ∧ alternate precedence(A, B)
chain response(A, B) 2(A⇒©B)
chain precedence(A, B) 2(©B⇒ A)

chain succession(A, B) 2(A⇔©B)

Table 8.1: Semantics for the DECLARE constraints [Bur+12].

get motif signature. The entire definition of the algorithm is illustrated in
Algorithm 6.

8.4.2 Specification of Process Constraints

This section describes how process constraints can be described to pre-
serve the process goal and the feasibility of the process. For this purpose,
DECLARE [PSA07] models are used to specify the process constraints. DE-
CLARE is an LTL-based declarative process modeling language that uses a
graphical representation with formal semantics to model the behavior of a
process via instantiation of templates [Bur+12]. The templates are listed with
their corresponding LTL expressions in Table 8.1.

The following symbols are used to express the semantics of the temporal
operators:

Operator Symbol Explanation

Next ©φ φ has to hold the next state.
Finally �φ φ eventually has to hold.
Globally 2φ φ has to hold on the entire subsequent path.
Until ψ t φ ψ has to hold at least until φ becomes true, which must

hold at the current or a future position.

Table 8.2: Symbols for the LTL expressions.

Each template specifies a constraint that needs to be fulfilled by the process
model. For instance, the response template defines that each time a specific
activity is executed it must be eventually followed by another specific activity.
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With the templates, a wide range of different process constraints can be
specified. These constraints are evaluated in the adaptation step to check
whether a proposed adaptation of a process map is still feasible. Each time
the adaptation algorithm applies a possible graph operation, it executes the
process constraint function to check the predefined DECLARE models.

There are two approaches to obtain DECLARE models for describing process
constraints that must be fulfilled for suggested process improvements. The
first approach is to manually specify DECLARE models using the graphical
representation editor [Bur+12]. However, specifying DECLARE models that
fully describe the process constraints may be difficult when processes get
more sophisticated. The second approach is to obtain DECLARE models from
event logs automatically. This is particularly interesting because DECLARE
models obtained from real process executions better reflect the actual process.
MINERful [Di +15] is such a declarative process discovery tool that obtains a
DECLARE model from an event log. The tool allows the analyst to control the
quality of the DECLARE model by specifying a confidence threshold which
is the product of support and the relative frequency of traces in the event log
containing the specific DECLARE rule. The model obtained is then utilized
for the adaptation algorithm as the input for the process constraint function
to generate valid process maps.

8.5 Evaluation

This section presents the evaluation results of the motif-based graph adapta-
tion algorithm for improving process maps.

8.5.1 Experiment Setup

In the evaluation, five real-life event logs (see Table 8.3) were used to show
how the proposed approach adapts the process maps to achieve the im-
provement goal. For each event log, two process maps were generated with
the standard and the noise-free setting of the FHM. The process constraints
for the event logs were obtained by means of the MINERful tools with a
confidence threshold of 0.95. Table 8.3 shows the number of DECLARE rules
that were obtained by the tool.

The improvement goal for all event logs is to increase process model simplic-
ity. Based on the observations in Section 8.3 three different target signatures
are defined:

1. t1 = {0.33, 0.33, 0.33, 0, 0, ...}

2. t2 = {0.2, 0.2, 0.6, 0, 0, ...}

3. t3 = {0.228, 0.228, 0.347, 0, 0, 0, 0, 0.19, 0, 0, ...}
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Event log Instances Variants Events Events/Case Constraints

BPIC ’12 13087 7179 36 20.04 214
Large 651709 30460 35 5.95 122
Small 873 101 45 7.77 26
Midsize 90536 1630 30 9.06 56
Environmental 1434 381 27 5.98 49

Table 8.3: Characteristics of the used real-life event logs and the number of extracted
process constraints.

The motif-based graph adaptation algorithm is executed until the distance
between the actual and the target signature is less than 0.1, which was
achieved in a maximum of five iterations.

8.5.2 Results

This section presents the results of the three evaluation objectives: the im-
provement goal performance, the distance changes to the target signature per
iteration, and the number of applied operations per iteration.

8.5.2.1 Improvement Goal Performance

The main objective of this evaluation is to compare the three different tar-
get signatures and investigate which signature achieves the improvement
goal best. For all event logs, the initial number of edges, the graph den-
sity, and the clustering coefficient are measured. After executing the graph
adaptation algorithm using the three different target signatures, the resulting
measurements are obtained. The results of the improvement performance are
illustrated in Figure 8.5.

First, we investigate the process models obtained using the standard setting
for the FHM. The results indicate that only the target signatures t1 and
t2 decreased the number of edges, the graph density, and the clustering
coefficient, which was the improvement goal to achieve. Target signature
t3 increased the clustering coefficient and only removed three edges from
the Environmental event log. Although t3 was derived from the correlation
analysis conducted in Section 8.3, this target signature did not perform well
for our improvement goal. The detailed results are illustrated in Table 8.4.

The process models obtained with the noise-free setting of the FHM contain
more edges, have a higher graph density, and a higher clustering coefficient.
After the motif-based graph adaptation, the target signatures t1 and t2 pro-
duced process models with fewer edges and a lower clustering coefficient.
Again, for target signature t3 the number of edges and the clustering coeffi-
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Figure 8.5: Cluster coefficient and density values before and after the optimization
grouped for the three different target signatures.

cient is not significantly improved, except for the event log Large. The detailed
results are shown in Table 8.5.

Based on the results of both experiments, we come to the conclusion that
the achievement of the improvement goal depends strongly on the definition
of the target motif signature. Although the three target motif signatures ob-
tained from the correlation analysis vary only slightly, these small differences
have a high influence on the resulting process models. We showed that the
desired improvement goal was achieved for two manually defined target
motif signatures. For both target motif signatures, the distribution was chosen
so that three motifs make the greatest contribution. However, our experiments
did not show a general rule of thumbs that would suggest how to exactly
define the target motif signature.

8.5.2.2 Distance to Target Signature over Iterations

Another evaluation objective is how quickly the motif-based graph adaptation
algorithm approximates the target signatures for a given process model under
the process constraints. Figure 8.6 shows the distance to the target signature
across all event logs for each found. The results show that for almost all
process models, the distance to the target signature converges towards zero
within the five iterations. The target signature t1 is reached already within
four iterations for all evaluated process models. However, the target signature
t3 could only be approximated, and only for the small process model, the
distance to the target signature is zero. In all cases, the largest jump towards
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BPIC’12 Large Small Midsize Environ.

Initial Edges 39 106 29 73 40

Initial Density 0.071 0.089 0.069 0.084 0.057

Initial Cluster Coefficient 0.059 0.120 0.065 0.110 0.033

t1 ∆ Edges -1 -20 0 0 -3
∆ Cluster Coefficient -0.059 -0.140 -0.065 -0.110 -0.021

t2 ∆ Edges 0 -38 0 -23 -3
∆ Cluster Coefficient -0.059 -0.140 -0.065 -0.110 -0.033

t3 ∆ Edges 1 0 0 0 -3
∆ Cluster Coefficient 0.133 0.023 0.122 0.076 0.151

Table 8.4: Difference of the number of edges, graph density, and clustering coefficient
for the process models obtained using the standard setting of the FHM
before and after motif-based graph adaptation.

BPIC’12 Large Small Midsize Environ.

Initial Edges 54 244 37 61 47

Initial Density 0,098 0,205 0,088 0,070 0,067

Initial Cluster Coefficient 0,100 0,331 0,072 0,062 0,097

t1 ∆ Edges -19 -152 -7 -12 -16

∆ Cluster Coefficient -0.100 -0.325 -0.056 -0.056 -0.097

t2 ∆ Edges -19 -168 -8 -17 -18

∆ Cluster Coefficient -0.100 -0.331 -0.072 -0.062 -0.097

t3 ∆ Edges -11 -138 0 0 -10

∆ Cluster Coefficient 0.092 -0.178 0.113 0.130 0.086

Table 8.5: Difference of the number of edges, graph density, and clustering coefficient
for the process models obtained using the noise-free setting of the FHM
before and after motif-based graph adaptation.
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Figure 8.6: Distance to target signatures over the number of iterations.

the target signature is achieved in the first iteration. Another observation is
that the size of the process model influences the approximation speed.

8.5.2.3 Operations

Lastly, we investigated the number of removed and added edge operations
for each iteration and target signature. The number of applied operations
to the process map decreases with each executed adaptation iteration. Most
operations were performed in iteration one which was also observed in
Section 8.5.2.2. After iteration 2, for almost all investigated event logs, the
number of added and removed edges were the same, suggesting that only
the move operator was applied. The detailed results of the applied number
of operations per iteration are illustrated in Figure 8.7.

8.6 Discussion and Limitations

This chapter presented a process model optimization algorithm based on
motif analysis. However, there are some limitations and research directions
for future work.

8.6.1 Improvement Goal

The process model optimization algorithm optimizes a given process model
according to a target motif signature. Our experiments showed that describing
certain process improvement goals as signatures is possible. However, it is
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Figure 8.7: Normalized number of edge operations performed for investigated target
signatures and iterations.

clear that this is not possible for every process improvement goal. For instance,
improving a process model with respect to throughput performance is not
possible. Our work is limited to the improvement of process models according
to improvement goals that can be specified as a graph metric.

Another limitation of our approach is that it relies on the manual exploration
and analysis of correlations between graph metrics and improvement goals.
This analysis is necessary to find appropriate target motif signatures. How-
ever, finding and analyzing correlations is rather exploratory and, therefore,
time-consuming. It may be interesting to look into automating the analysis
of correlations between graph metrics and improvement goals to improve
the target motif signature definition. Specifying a process improvement goal
without the need to specifically design target motif signatures would enhance
the applicability of the approach.

A general limitation of process improvement approaches is to measure the
quality of the proposed improvement modifications. Specifically, the con-
ducted experimental evaluation did not investigate the resulting process
maps after they were adapted. The proposed algorithm ensures that the
process constraints defined are fulfilled, but it does not guarantee that the
improved process model performs better.

8.6.2 Local Improvements

Motifs are small subgraphs containing only a small number of nodes. Motifs
have only a very local perspective on the entire process model and cannot
represent larger dependencies. Therefore, our approach is only able to op-
timize small parts of the process model with the goal that the sum of all
smaller optimizations leads to a global optimization.
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In the experimental evaluation, only three-node motifs were investigated
to specify target motif signatures. A potential future research direction is
the use of four or five node motifs which could better reflect the actual
structure of a process. However, using larger motifs results in high computa-
tion times because counting motifs in graphs is a computationally complex
problem [Ste+17].

8.6.3 Process Model

The current algorithm is limited to simple process maps that do not contain
complex process semantics such as parallelism. However, more expressive
process models are typically used at design time, which requires extensive
modifications to the process constraint function. The use of complex process
semantics may cause additional mechanisms that check whether branching
paths are correctly joined or whether the resulting process model is sound
and executable.

8.7 Conclusion

This chapter introduced a motif-based graph adaptation algorithm in the
context of business process optimization which automatically provides sug-
gestions for modifying process maps while considering specified process
constraints. In summary, the main contributions of this chapter are:

1. A method to retrieve a motif target signature to optimize a process map
according to a specific metric.

2. A motif-based graph adaptation algorithm that adapts process maps
towards a given motif target signature while retaining important process
constraints using DECLARE models.

3. Results from an experimental evaluation investigating the improvement
goal performance, the distance to the target signature over iterations,
and the number of accepted adaptation operations.

Motif-based graph adaptation in the context of business processes allows
the improvement of process maps according to a specific improvement goal
without affecting the intended process goal. Based on the insights provided by
the algorithms and methods introduced in the previous chapters, analysts can
configure the process model improvement algorithm. This chapter introduced
the last contribution of this thesis, allowing organizations to implement
potential process improvements. It is essential to permanently monitor and
evaluate the changes made to the process in an iterative fashion, illustrated
in Figure 8.8. In the following chapter, we summarize the contributions of
this thesis.
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9
Summary and Conclusion

This chapter summarizes the contributions and findings according to the five
parts of the thesis. Furthermore, we will give some research directions for
future work.

9.1 Summary

This thesis presented several methods and algorithms to provide intelligent
computer-assisted process mining for real-life scenarios. In particular, this
thesis contributed methods and algorithms for the practical work of analysts
within the context of the PM2 methodology [Eck+15]. Along the workflow
of analysts, this thesis addressed common issues found in the state of the
art approaches and addressed three main research questions to overcome
the challenges related to the practical use of process mining. Specifically, the
work is categorized into three main parts.

• Knowledge Extraction. Part II of this thesis investigated the consolida-
tion and annotation of heterogeneous data sources to better enable the
application of process mining techniques.

• Process Analysis. In Part III, this thesis contributed three effective
process analysis methods that can be used in real-life scenarios.

• Process Analysis Assistance. Part IV of this thesis introduced an intel-
ligent computer-assisted process mining browsing system that guides
analysts through the exploration of process models.

In the following, the proposed contributions are summarized and linked to
the research questions addressed in this thesis.

Knowledge Extraction

Part II of this thesis deals with the collection, preparation, and data processing
of event logs which are the basis for process mining. Although most process
mining methods assume the existence of such event logs, it is a non-trivial
task to obtain event logs from information systems. Event data is spread
throughout the organization and stored in different heterogeneous data
sources, not directly usable for process mining. In this context, RQ1 asked

207



208 summary and conclusion

how event logs from different data sources can be collected, consolidated and
annotated to better enable their use for process mining.

Chapter 3 introduced the process knowledge artifact framework that sig-
nificantly simplifies data collection, preparation, and processing for pro-
cess mining. Our framework integrates the data preparation of raw data of
Process-aware Information Systems (PAISs) and the process mining analysis
into a combined meta-model. Analysts can model and maintain known and
recurring process problems to facilitate process analysis.

Unlike conventional exploratory analysis, where analysts repeatedly per-
form specific process mining tasks manually, the process knowledge artifact
framework enables rapid evaluation for frequently investigated aspects auto-
matically.

Process Analysis

Part III of this thesis deals with the practical use of process mining with
real-life event data. Although process mining is a research area of high
practical relevance, the growth of data and the increasing complexity of
actual processes lead to several issues of current methods. In this thesis,
RQ2 asked how real-life event logs can be effectively analyzed using process
mining methods. This part of the thesis contributed one targeted and two
exploratory process mining analysis techniques.

Chapter 4 addressed RQ2.1, answering how compliance rules can be effi-
ciently evaluated. We contributed a novel compliance checking method that
transforms the problem of compliance checking into a graph-reachability
problem. Our algorithm is significantly more efficient than comparable rule-
based approaches. Furthermore, the method provides counterexamples for
violated compliance rules to simplify deviation analysis, enabling detailed
diagnosis.

In the area of process discovery, RQ2.2 asked how process drifts can be
detected without knowledge about the process. Chapter 5 introduced a novel
process drift detection method to detect differences in process executions
over time automatically. Each process drift is characterized by annotating the
discovered process model with the differences being detected. The results
of the evaluation showed an overall higher F1-score and a lower detection
delay for the benchmark investigated. We also showed that the extracted
process drift characterizations for simple process drift patterns match the
ones injected into the benchmark data set.

RQ2.3 asked how different process behaviors on multiple perspectives can
be detected to improve process discovery. Chapter 6 contributed a novel
multi-perspective trace clustering method. Our algorithm is the first process
model-based trace clustering approach that combines control flow and data
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process perspective to determine the similarity between cases in an event
log. This combination is particularly useful in situations where the process
is not only determined by the control flow but also by the attached case
attributes. The approach automatically optimizes the resulting process models
such that they accurately represent the traces within a cluster. Results of
the evaluation showed that our method discriminates the different process
behaviors accurately. The approach builds the foundation for process analysis
assistance in Chapter 7.

The three process analysis algorithms are specifically designed to obtain
additional insights about the process execution that was recorded in an event
log. The compliance checking algorithm allows to check compliance rules
for very large event logs where other approaches do not yield results. Our
process drift detection algorithm identifies different types of process changes
without the analysts needing additional knowledge about the process. The
multi-perspective trace clustering algorithm significantly improves the state
of the art by considering different process perspectives during clustering and
by automatically optimizing the result with respect to process model fitness.

Process Analysis Assistance

Part IV aims to provide analysis assistance during the practical use of process
mining tools. In particular, RQ3 asked how process analysis assistance can
support the analyst’s workflow.

In Chapter 7 RQ3.1 is addressed, investigating analysis assistance in process
mining tools. We introduced ProcessExplorer, an interactive visual rec-
ommendation system for process mining. It extends existing state-of-the-art
process mining tools by providing two types of recommendations to support
the workflow of analysts analyzing large and real-life event logs. The auto-
matic recommendation engine evaluates a wide range of process performance
indicators to point analysts towards interesting findings.

RQ3.2 asked how insights of process mining can result in process model
improvements. Therefore, Chapter 8 introduced a motif-based process im-
provement algorithm to suggest modifications to the process model based on
a given improvement goal without affecting the business goal. Our approach
aims to propose changes to the process model so that a given improvement
goal is achieved while preserving the business objectives of the process.

Unlike conventional process mining tools that do not provide any analysis
guidance, ProcessExplorer is the first approach to actively suggest analysis
recommendations to better help analysts understand the process. Our process
model improvement approach is an attempt to suggest modifications to the
process model that may improve the process performance with respect to a
given improvement goal.



210 summary and conclusion

9.2 Directions for Future Research

This section discusses future research directions with respect to the overall
goal of this thesis.

• Parameter-free algorithms

This thesis argued in favor of parameter-free algorithms, and most of
the introduced contributions do not require to set any parameter at all.
As a result, these approaches can be easily applied in practice without
knowing the characteristics of the inspected event data. In practice,
a large number of existing approaches are not parameter-free, which
makes it unnecessarily challenging to obtain valuable results. Automatic
parameter tuning approaches, such as introduced for the process drift
detection algorithm and the multi-perspective trace clustering algo-
rithm, are needed for other process mining methods in the future to
make process mining more accessible.

• Establish assistance in other process mining areas

In this thesis, we combined multi-perspective trace clustering with
Process Performance Indicator (PPI) evaluation to provide exploration
assistance for process discovery to the analysts. Other process mining
areas, such as conformance checking and enhancement, could equally
benefit from the contributions made in this thesis. Similar to the in-
terestingness measure introduced, other measures that evaluate the
interestingness of different aspects of the process in conformance check-
ing and enhancement may be needed. The ultimate goal is to combine
different process mining areas to offer consistent and useful assistance.

• Improvement of runtime performance

In Part III of this thesis, three process analysis methods that aim to
deal with real-life event logs were introduced. We made significant
runtime improvements to compliance checking by adapting algorithms
from other domains. However, the performance of the process drift
detection and the multi-perspective trace clustering algorithm mainly
relies on the process discovery algorithm Flexible Heuristics Miner
(FHM) [WR11] and trace alignments [Man+15]. Both have been shown
in the related work to be highly computationally complex in order
to obtain reasonable process models and align traces to compute the
model fitness. For improving runtime performance of our work, it may
be necessary to investigate approximations with much faster runtime
for large event logs.
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Business Rule Evaluation using TFA

Detailed Evaluation Results
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Figure A.1: Processing time in seconds for the synthetic event logs depending on the
number of rules in the log (Part 1).
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Figure A.2: Processing time in seconds for the synthetic event logs depending on the
number of rules in the log (Part 2).
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Process Drift Detection

Detailed Evaluation Results
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cb - 0.96 0.72 0.97 - 78.38 108.56 18.94
cd 1.00 - 0.79 0.95 20 - 266.78 28.69

cf 0.90 1.00 0.81 0.99 36 32.33 140.48 34.62

cm - 0.92 0.81 0.97 - 66.24 131.27 19.24
cp 0.64 1.00 0.89 0.99 36 45.47 224.12 17.59
fr 0.44 0.36 0.61 0.99 165 65.12 268.18 19.92
IOR 0.78 1.00 0.92 0.96 38 32.44 200.52 13.00
IRO 0.56 1.00 0.90 0.95 82 61.11 313.42 27.22
lp 0.65 1.00 0.89 0.76 41 125.58 500.64 48.03

OIR 1.00 0.78 0.71 0.73 20 111.02 323.19 28.06

ORI 0.78 1.00 0.84 0.99 38 41.53 165.70 14.25
pl 1.00 0.96 0.81 0.96 20 37.33 158.17 26.33

pm 0.78 0.99 0.88 0.99 69 49.56 126.90 24.78
re 1.00 0.99 0.76 0.90 17 48.31 301.61 33.02

RIO 0.56 0.99 0.83 0.97 60 48.56 187.88 20.77
ROI 1.00 1.00 0.75 1.00 20 37.33 146.20 7.31
rp 0.75 0.97 0.82 0.97 40 45.31 167.46 12.67
sw 0.78 1.00 0.89 1.00 39 46.53 498.05 29.61

Table B.1: Detailed results of the experimental evaluation of the process drift detec-
tion methods.
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Figure B.1: F1-score for different process drift patterns (higher is better) and com-
pared with the related work. Filled diamond (u) indicates the mean.
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Hybrid Feature Set Trace Clustering

Detailed Evaluation Results
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Figure C.1: Process model fitness after trace clustering aggregated over all synthetic
event logs depending on the noise level.
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Figure C.2: Process model precision after trace clustering aggregated over all syn-
thetic event logs depending on the noise level.
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Figure C.3: F1-BCubed results after trace clustering aggregated over all synthetic
event logs depending on the noise level.
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synthetic event logs depending on the noise level.
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